Sarah Michaelis, Laura Gomez-Valero, Tong Chen, Camille Schmid, Carmen Buchrieser, Hubert Hilbi
{"title":"军团菌的小分子通讯:自身诱导剂和一氧化氮信号的来龙去脉。","authors":"Sarah Michaelis, Laura Gomez-Valero, Tong Chen, Camille Schmid, Carmen Buchrieser, Hubert Hilbi","doi":"10.1128/mmbr.00097-23","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARY<i>Legionella pneumophila</i> is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of <i>Legionella</i>-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. <i>L. pneumophila</i> produces, secretes, and detects the α-hydroxyketone compound <i>Legionella</i> autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by <i>L. pneumophila</i> in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. <i>L. pneumophila</i> detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked <i>via</i> the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by <i>Legionella</i> species.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0009723"},"PeriodicalIF":8.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426016/pdf/","citationCount":"0","resultStr":"{\"title\":\"Small molecule communication of <i>Legionella</i>: the ins and outs of autoinducer and nitric oxide signaling.\",\"authors\":\"Sarah Michaelis, Laura Gomez-Valero, Tong Chen, Camille Schmid, Carmen Buchrieser, Hubert Hilbi\",\"doi\":\"10.1128/mmbr.00097-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SUMMARY<i>Legionella pneumophila</i> is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of <i>Legionella</i>-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. <i>L. pneumophila</i> produces, secretes, and detects the α-hydroxyketone compound <i>Legionella</i> autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by <i>L. pneumophila</i> in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. <i>L. pneumophila</i> detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked <i>via</i> the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by <i>Legionella</i> species.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\" \",\"pages\":\"e0009723\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426016/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00097-23\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00097-23","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 嗜肺军团菌是一种革兰氏阴性环境细菌,它以浮游形式存活,在生物膜上定植,并感染原生动物。吸入受军团菌污染的气溶胶后,这种机会性病原体会在肺泡巨噬细胞内复制并破坏巨噬细胞,从而引起严重的肺炎,即军团菌病。革兰氏阴性细菌利用低分子量有机化合物和无机气体一氧化氮(NO)进行细胞间通讯。嗜肺军团菌能产生、分泌和检测α-羟酮化合物军团菌自动诱导剂-1(LAI-1,3-羟基十五烷-4-酮)。LAI-1 由嗜肺军团菌在外膜囊泡中分泌,不仅能促进细菌之间的交流,还能引发真核细胞的反应。嗜肺菌通过三种不同的受体检测 NO,并通过挥发性分子将信号转导为细胞内第二信使环二鸟苷酸单磷酸的波动。LAI-1 和 NO 信号通路通过多效应转录因子 LvbR 相连。在这篇综述中,我们总结了目前有关军团菌通过 LAI-1 和 NO 进行细菌间和王国间信号传递的知识。
Small molecule communication of Legionella: the ins and outs of autoinducer and nitric oxide signaling.
SUMMARYLegionella pneumophila is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of Legionella-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. L. pneumophila produces, secretes, and detects the α-hydroxyketone compound Legionella autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by L. pneumophila in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. L. pneumophila detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked via the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by Legionella species.
期刊介绍:
Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.