探测纳米通道中蛋白质与 DNA 的相互作用和压实。

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current opinion in structural biology Pub Date : 2024-08-19 DOI:10.1016/j.sbi.2024.102914
Robert Riehn
{"title":"探测纳米通道中蛋白质与 DNA 的相互作用和压实。","authors":"Robert Riehn","doi":"10.1016/j.sbi.2024.102914","DOIUrl":null,"url":null,"abstract":"<div><p>DNA confined to nanofluidic channels with a cross-section from tens to hundreds of nm wide and hundreds of microns long stretches in an equilibrium process free of flow or end tethering. Because DNA is free to move along the channel axis, its extension is exquisitely sensitive to DNA–DNA interactions and the DNA persistence length, as well as the contour length. We discuss how this sensitivity has been used to probe DNA-protein interactions at physiological concentrations of both DNA and proteins.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"88 ","pages":"Article 102914"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing protein–DNA interactions and compaction in nanochannels\",\"authors\":\"Robert Riehn\",\"doi\":\"10.1016/j.sbi.2024.102914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>DNA confined to nanofluidic channels with a cross-section from tens to hundreds of nm wide and hundreds of microns long stretches in an equilibrium process free of flow or end tethering. Because DNA is free to move along the channel axis, its extension is exquisitely sensitive to DNA–DNA interactions and the DNA persistence length, as well as the contour length. We discuss how this sensitivity has been used to probe DNA-protein interactions at physiological concentrations of both DNA and proteins.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"88 \",\"pages\":\"Article 102914\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24001416\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24001416","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

DNA 被限制在横截面宽几十到几百纳米、长几百微米的纳米流体通道中,在没有流动或末端系链的平衡过程中延伸。由于 DNA 可以沿通道轴线自由移动,因此其延伸对 DNA-DNA 相互作用、DNA 持续长度以及轮廓长度极为敏感。我们将讨论如何利用这种敏感性来探测 DNA 和蛋白质在生理浓度下的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probing protein–DNA interactions and compaction in nanochannels

DNA confined to nanofluidic channels with a cross-section from tens to hundreds of nm wide and hundreds of microns long stretches in an equilibrium process free of flow or end tethering. Because DNA is free to move along the channel axis, its extension is exquisitely sensitive to DNA–DNA interactions and the DNA persistence length, as well as the contour length. We discuss how this sensitivity has been used to probe DNA-protein interactions at physiological concentrations of both DNA and proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
期刊最新文献
Characterizing heterogeneity in amyloid formation processes. Biochemistry and genetics are coming together to improve our understanding of genotype to phenotype relationships Deep learning for intrinsically disordered proteins: From improved predictions to deciphering conformational ensembles Short circuit: Transcription factor addiction as a growing vulnerability in cancer Conformational penalties: New insights into nucleic acid recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1