{"title":"用于糖尿病闭环管理的可穿戴、可快速制造、稳定性增强型微针贴片。","authors":"Yiqun Liu, Li Yang, Yue Cui","doi":"10.1038/s41378-024-00663-y","DOIUrl":null,"url":null,"abstract":"<p><p>The development of a wearable, easy-to-fabricate, and stable intelligent minisystem is highly desired for the closed-loop management of diabetes. Conventional systems always suffer from large size, high cost, low stability, or complex fabrication. Here, we show for the first time a wearable, rapidly manufacturable, stability-enhancing microneedle patch for diabetes management. The patch consists of a graphene composite ink-printed sensor on hollow microneedles, a polyethylene glycol (PEG)-functionalized electroosmotic micropump integrated with the microneedles, and a printed circuit board for precise and intelligent control of the sensor and pump to detect interstitial glucose and deliver insulin through the hollow channels. Via synthesizing and printing the graphene composite ink, the sensor fabrication process is fast and the sensing electrodes are stable. The PEG functionalization enables the micropump a significantly higher stability in delivering insulin, extending its lifetime from days to weeks. The patch successfully demonstrated excellent blood glucose control in diabetic rats. This work may introduce a new paradigm for building new closed-loop systems and shows great promise for widespread use in patients with diabetes.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"112"},"PeriodicalIF":7.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333613/pdf/","citationCount":"0","resultStr":"{\"title\":\"A wearable, rapidly manufacturable, stability-enhancing microneedle patch for closed-loop diabetes management.\",\"authors\":\"Yiqun Liu, Li Yang, Yue Cui\",\"doi\":\"10.1038/s41378-024-00663-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of a wearable, easy-to-fabricate, and stable intelligent minisystem is highly desired for the closed-loop management of diabetes. Conventional systems always suffer from large size, high cost, low stability, or complex fabrication. Here, we show for the first time a wearable, rapidly manufacturable, stability-enhancing microneedle patch for diabetes management. The patch consists of a graphene composite ink-printed sensor on hollow microneedles, a polyethylene glycol (PEG)-functionalized electroosmotic micropump integrated with the microneedles, and a printed circuit board for precise and intelligent control of the sensor and pump to detect interstitial glucose and deliver insulin through the hollow channels. Via synthesizing and printing the graphene composite ink, the sensor fabrication process is fast and the sensing electrodes are stable. The PEG functionalization enables the micropump a significantly higher stability in delivering insulin, extending its lifetime from days to weeks. The patch successfully demonstrated excellent blood glucose control in diabetic rats. This work may introduce a new paradigm for building new closed-loop systems and shows great promise for widespread use in patients with diabetes.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 \",\"pages\":\"112\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333613/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00663-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00663-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A wearable, rapidly manufacturable, stability-enhancing microneedle patch for closed-loop diabetes management.
The development of a wearable, easy-to-fabricate, and stable intelligent minisystem is highly desired for the closed-loop management of diabetes. Conventional systems always suffer from large size, high cost, low stability, or complex fabrication. Here, we show for the first time a wearable, rapidly manufacturable, stability-enhancing microneedle patch for diabetes management. The patch consists of a graphene composite ink-printed sensor on hollow microneedles, a polyethylene glycol (PEG)-functionalized electroosmotic micropump integrated with the microneedles, and a printed circuit board for precise and intelligent control of the sensor and pump to detect interstitial glucose and deliver insulin through the hollow channels. Via synthesizing and printing the graphene composite ink, the sensor fabrication process is fast and the sensing electrodes are stable. The PEG functionalization enables the micropump a significantly higher stability in delivering insulin, extending its lifetime from days to weeks. The patch successfully demonstrated excellent blood glucose control in diabetic rats. This work may introduce a new paradigm for building new closed-loop systems and shows great promise for widespread use in patients with diabetes.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.