{"title":"工艺参数对利用连续摩擦搅拌挤压法从 A356 铝合金切片生产的线材机械性能的影响:实验和数值模拟","authors":"Simone Amantia, Davide Campanella, Riccardo Puleo, Gianluca Buffa, Livan Fratini","doi":"10.1016/j.cirpj.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Recycling of metals is becoming crucial from an economic and environmental point of view. The solid-state recycling process Continuous Friction Stir Extrusion was used to produce wires out of A356-T6 chips. The mechanical properties of the produced wires were explored by varying the main process parameters. Characterization involved Vickers hardness tests, tensile tests, grain size measurements, and fracture surface analysis. It has been found that it is possible to achieve 77 % of the Ultimate Tensile Strength (UTS) and 92 % of Vickers hardness with respect to the as-fabricated A356 alloy. The average grain size increases with the tool rotational with values ranging from about 9 µm to about 11 µm. A 3D dedicated numerical model was used to predict the distributions and histories of primary field variables, and to calculate the Piwnik-Plata parameter, fostering a more in-depth understanding of the process mechanics. This allows for the precise prediction of unacceptable product quality of the bonding when the Plata and Piwnik parameters are low. Predicted temperature close to the rotating tool should reach 400 °C while the cochlea temperature should be below 100 °C for sound wires production thus avoiding early chip bonding and process failure.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"54 ","pages":"Pages 28-42"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of process parameters on the mechanical properties of wires produced from A356 aluminum alloy chips by Continuous Friction Stir Extrusion: Experiments and numerical simulation\",\"authors\":\"Simone Amantia, Davide Campanella, Riccardo Puleo, Gianluca Buffa, Livan Fratini\",\"doi\":\"10.1016/j.cirpj.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recycling of metals is becoming crucial from an economic and environmental point of view. The solid-state recycling process Continuous Friction Stir Extrusion was used to produce wires out of A356-T6 chips. The mechanical properties of the produced wires were explored by varying the main process parameters. Characterization involved Vickers hardness tests, tensile tests, grain size measurements, and fracture surface analysis. It has been found that it is possible to achieve 77 % of the Ultimate Tensile Strength (UTS) and 92 % of Vickers hardness with respect to the as-fabricated A356 alloy. The average grain size increases with the tool rotational with values ranging from about 9 µm to about 11 µm. A 3D dedicated numerical model was used to predict the distributions and histories of primary field variables, and to calculate the Piwnik-Plata parameter, fostering a more in-depth understanding of the process mechanics. This allows for the precise prediction of unacceptable product quality of the bonding when the Plata and Piwnik parameters are low. Predicted temperature close to the rotating tool should reach 400 °C while the cochlea temperature should be below 100 °C for sound wires production thus avoiding early chip bonding and process failure.</p></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":\"54 \",\"pages\":\"Pages 28-42\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581724001184\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724001184","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Effect of process parameters on the mechanical properties of wires produced from A356 aluminum alloy chips by Continuous Friction Stir Extrusion: Experiments and numerical simulation
Recycling of metals is becoming crucial from an economic and environmental point of view. The solid-state recycling process Continuous Friction Stir Extrusion was used to produce wires out of A356-T6 chips. The mechanical properties of the produced wires were explored by varying the main process parameters. Characterization involved Vickers hardness tests, tensile tests, grain size measurements, and fracture surface analysis. It has been found that it is possible to achieve 77 % of the Ultimate Tensile Strength (UTS) and 92 % of Vickers hardness with respect to the as-fabricated A356 alloy. The average grain size increases with the tool rotational with values ranging from about 9 µm to about 11 µm. A 3D dedicated numerical model was used to predict the distributions and histories of primary field variables, and to calculate the Piwnik-Plata parameter, fostering a more in-depth understanding of the process mechanics. This allows for the precise prediction of unacceptable product quality of the bonding when the Plata and Piwnik parameters are low. Predicted temperature close to the rotating tool should reach 400 °C while the cochlea temperature should be below 100 °C for sound wires production thus avoiding early chip bonding and process failure.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.