拟南芥根系发育过程中对环境信号响应的最新进展

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-08-12 DOI:10.1016/j.plaphy.2024.109037
{"title":"拟南芥根系发育过程中对环境信号响应的最新进展","authors":"","doi":"10.1016/j.plaphy.2024.109037","DOIUrl":null,"url":null,"abstract":"<div><p>Plants grow by anchoring their roots in the soil, acquiring essential water and nutrients for growth, and interacting with other signaling factors in the soil. Root systems are crucial for both the basic growth and development of plants and their response to external environmental stimuli. Under different environmental conditions, the configuration of root systems in plants can undergo significant changes, with their strength determining the plant's ability to adapt to the environment. Therefore, understanding the mechanisms by which environmental factors regulate root development is essential for crop root architecture improvement and breeding for stress resistance. This paper summarizes the research progress in genetic regulation of root development of the model plant <em>Arabidopsis thaliana (L.) Heynh</em>. amidst diverse environmental stimuli over the past five years. Specifically, it focuses on the regulatory networks of environmental signals, encompassing light, energy, temperature, water, nutrients, and reactive oxygen species, on root development. Furthermore, it provides prospects for the application of root architecture improvement in crop breeding for stress resistance and nutrient efficiency.</p></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in response to environmental signals during Arabidopsis root development\",\"authors\":\"\",\"doi\":\"10.1016/j.plaphy.2024.109037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plants grow by anchoring their roots in the soil, acquiring essential water and nutrients for growth, and interacting with other signaling factors in the soil. Root systems are crucial for both the basic growth and development of plants and their response to external environmental stimuli. Under different environmental conditions, the configuration of root systems in plants can undergo significant changes, with their strength determining the plant's ability to adapt to the environment. Therefore, understanding the mechanisms by which environmental factors regulate root development is essential for crop root architecture improvement and breeding for stress resistance. This paper summarizes the research progress in genetic regulation of root development of the model plant <em>Arabidopsis thaliana (L.) Heynh</em>. amidst diverse environmental stimuli over the past five years. Specifically, it focuses on the regulatory networks of environmental signals, encompassing light, energy, temperature, water, nutrients, and reactive oxygen species, on root development. Furthermore, it provides prospects for the application of root architecture improvement in crop breeding for stress resistance and nutrient efficiency.</p></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824007058\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824007058","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物通过将根系固定在土壤中,获取生长所需的水分和养分,并与土壤中的其他信号因子相互作用来生长。根系对植物的基本生长和发育以及对外界环境刺激的反应都至关重要。在不同的环境条件下,植物根系的构造会发生显著变化,其强度决定了植物适应环境的能力。因此,了解环境因素调控根系发育的机制对于作物根系结构改良和抗逆育种至关重要。本文总结了过去五年来模式植物拟南芥(Arabidopsis thaliana (L.) Heynh.)在不同环境刺激下根系发育遗传调控的研究进展。具体而言,它重点研究了环境信号(包括光、能量、温度、水分、养分和活性氧)对根系发育的调控网络。此外,它还为根系结构改良在作物抗逆性和养分效率育种中的应用提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in response to environmental signals during Arabidopsis root development

Plants grow by anchoring their roots in the soil, acquiring essential water and nutrients for growth, and interacting with other signaling factors in the soil. Root systems are crucial for both the basic growth and development of plants and their response to external environmental stimuli. Under different environmental conditions, the configuration of root systems in plants can undergo significant changes, with their strength determining the plant's ability to adapt to the environment. Therefore, understanding the mechanisms by which environmental factors regulate root development is essential for crop root architecture improvement and breeding for stress resistance. This paper summarizes the research progress in genetic regulation of root development of the model plant Arabidopsis thaliana (L.) Heynh. amidst diverse environmental stimuli over the past five years. Specifically, it focuses on the regulatory networks of environmental signals, encompassing light, energy, temperature, water, nutrients, and reactive oxygen species, on root development. Furthermore, it provides prospects for the application of root architecture improvement in crop breeding for stress resistance and nutrient efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Riboflavin improves postharvest cold tolerance in zucchini fruit inducing non-enzymatic antioxidant response and phenolic metabolism Infection of tomato plants by tomato yellow leaf curl virus (TYLCV) potentiates the ethylene and salicylic acid pathways to fend off root-knot nematode (Meloidogyne incognita) parasitism Effects of water deficit on two cultivars of Hibiscus mutabilis: A comprehensive study on morphological, physiological, and metabolic responses Effect of green and UVA spectra, and pre-harvest treatments on biomass and metabolite yields of indoor cultivated stevia rebaudiana Combining transcriptome and metabolome analyses to reveal the response of maize roots to Pb stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1