通过高通量筛选获得具有不同带隙结构的空间群 P2/m 稳定新型硅同素异构体

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-20 DOI:10.1016/j.commatsci.2024.113302
{"title":"通过高通量筛选获得具有不同带隙结构的空间群 P2/m 稳定新型硅同素异构体","authors":"","doi":"10.1016/j.commatsci.2024.113302","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon is the fundamental material for the semiconductor and microelectronics industries, but controlling the electronic band gap structure of diamond-type silicon remains a huge challenge to adapt to growing applications. Here, we have predicated 23 new silicon allotropes in space group <em>P</em>2/<em>m</em> from 279 possible structures by high-throughput screening accompanied by graph and group theory based on random strategy (RG<sup>2</sup>) code. The mechanical, electronic and optical properties of these structures were studied in detail. These novel silicon allotropes demonstrate various electronic structures, including metal, direct/quasi direct bandgap structure, and indirect bandgap structures. These new silicon allotropes demonstrate various electronic structures, including metal, direct/quasi direct bandgap structure, and indirect bandgap structures. Besides different electronic bandgap structures, all 23 structures exhibit strong absorption in the visible light region and P2/m-15 demonstrates the excellent mechanical properties (Bulk modulus beyond 80 GPa). Based on their nice stability, good mechanical, electronic and optical properties validated by the ab inito molecular dynamics simulation, phonon spectra and density functional theoretical calculations, these predicted silicon allotropes provide not only ideas for the synthesis of new silicon allotropes but also dawn for expanding the application of semiconductor materials.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable novel silicon allotropes in space group P2/m with various band gap structures by high-throughput screening\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicon is the fundamental material for the semiconductor and microelectronics industries, but controlling the electronic band gap structure of diamond-type silicon remains a huge challenge to adapt to growing applications. Here, we have predicated 23 new silicon allotropes in space group <em>P</em>2/<em>m</em> from 279 possible structures by high-throughput screening accompanied by graph and group theory based on random strategy (RG<sup>2</sup>) code. The mechanical, electronic and optical properties of these structures were studied in detail. These novel silicon allotropes demonstrate various electronic structures, including metal, direct/quasi direct bandgap structure, and indirect bandgap structures. These new silicon allotropes demonstrate various electronic structures, including metal, direct/quasi direct bandgap structure, and indirect bandgap structures. Besides different electronic bandgap structures, all 23 structures exhibit strong absorption in the visible light region and P2/m-15 demonstrates the excellent mechanical properties (Bulk modulus beyond 80 GPa). Based on their nice stability, good mechanical, electronic and optical properties validated by the ab inito molecular dynamics simulation, phonon spectra and density functional theoretical calculations, these predicted silicon allotropes provide not only ideas for the synthesis of new silicon allotropes but also dawn for expanding the application of semiconductor materials.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005238\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005238","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅是半导体和微电子工业的基础材料,但控制金刚石型硅的电子带隙结构仍是适应不断增长的应用所面临的巨大挑战。在此,我们通过基于随机策略(RG2)代码的图论和群论进行高通量筛选,从 279 种可能的结构中推测出 23 种空间群 P2/m 的新硅同素异形体。对这些结构的机械、电子和光学特性进行了详细研究。这些新型硅同素异形体显示出多种电子结构,包括金属结构、直接/准直接带隙结构和间接带隙结构。这些新型硅同素异形体展示了各种电子结构,包括金属、直接/准直接带隙结构和间接带隙结构。除了不同的电子带隙结构外,所有 23 种结构在可见光区域都有很强的吸收能力,P2/m-15 还具有优异的机械性能(体积模量超过 80 GPa)。这些预言的硅同素异形体具有良好的稳定性、良好的机械、电子和光学性能,并通过ab inito分子动力学模拟、声子光谱和密度泛函理论计算得到了验证,这些预言的硅同素异形体不仅为合成新的硅同素异形体提供了思路,也为拓展半导体材料的应用提供了曙光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stable novel silicon allotropes in space group P2/m with various band gap structures by high-throughput screening

Silicon is the fundamental material for the semiconductor and microelectronics industries, but controlling the electronic band gap structure of diamond-type silicon remains a huge challenge to adapt to growing applications. Here, we have predicated 23 new silicon allotropes in space group P2/m from 279 possible structures by high-throughput screening accompanied by graph and group theory based on random strategy (RG2) code. The mechanical, electronic and optical properties of these structures were studied in detail. These novel silicon allotropes demonstrate various electronic structures, including metal, direct/quasi direct bandgap structure, and indirect bandgap structures. These new silicon allotropes demonstrate various electronic structures, including metal, direct/quasi direct bandgap structure, and indirect bandgap structures. Besides different electronic bandgap structures, all 23 structures exhibit strong absorption in the visible light region and P2/m-15 demonstrates the excellent mechanical properties (Bulk modulus beyond 80 GPa). Based on their nice stability, good mechanical, electronic and optical properties validated by the ab inito molecular dynamics simulation, phonon spectra and density functional theoretical calculations, these predicted silicon allotropes provide not only ideas for the synthesis of new silicon allotropes but also dawn for expanding the application of semiconductor materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1