水-固界面机械-电耦合产生的伏流效应

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-09-03 Epub Date: 2024-08-21 DOI:10.1021/acsnano.4c07900
Tao Hu, Kelan Zhang, Wei Deng, Wanlin Guo
{"title":"水-固界面机械-电耦合产生的伏流效应","authors":"Tao Hu, Kelan Zhang, Wei Deng, Wanlin Guo","doi":"10.1021/acsnano.4c07900","DOIUrl":null,"url":null,"abstract":"<p><p>The natural water cycle on the Earth carries an enormous amount of energy as thirty-five percent of solar energy reaching the Earth's surface goes into water. However, only a very marginal part of the contained energy, mostly kinetic energy of large volume bulk water, is harvested by hydroelectric power plants. Natural processes in the water cycle, such as rainfall, water evaporation, and moisture adsorption, are widespread but have remained underexploited in the past due to the lack of appropriate technologies. In the past decade, the emergence of hydrovoltaic technology has provided ever-increasing opportunities to extend the technical capability for energy harvesting from the water cycle. Featuring electricity generation from mechanical-electric coupling at the water-solid interface, hydrovoltaic technology embraces almost all dynamic processes associated with water, including raining, waving, flowing, evaporating, and moisture adsorbing. This versatility in dealing with various forms of water and associated energy renders hydrovoltaic technology a solution for fossil fuel-caused environmental problems. Here, we review the current progress of hydrovoltaic energy harvesting from water motion, evaporation, and ambient moisture. Device configuration, energy conversion mechanism mediated by mechanical-electric coupling at various water-solid interfaces, as well as materials selection and functionalization are discussed. Useful strategies guided by established mechanisms for device optimization are then covered. Finally, we provide an outlook on this emerging field and outline the challenges of improving output performance toward potential practical applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrovoltaic Effects from Mechanical-Electric Coupling at the Water-Solid Interface.\",\"authors\":\"Tao Hu, Kelan Zhang, Wei Deng, Wanlin Guo\",\"doi\":\"10.1021/acsnano.4c07900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The natural water cycle on the Earth carries an enormous amount of energy as thirty-five percent of solar energy reaching the Earth's surface goes into water. However, only a very marginal part of the contained energy, mostly kinetic energy of large volume bulk water, is harvested by hydroelectric power plants. Natural processes in the water cycle, such as rainfall, water evaporation, and moisture adsorption, are widespread but have remained underexploited in the past due to the lack of appropriate technologies. In the past decade, the emergence of hydrovoltaic technology has provided ever-increasing opportunities to extend the technical capability for energy harvesting from the water cycle. Featuring electricity generation from mechanical-electric coupling at the water-solid interface, hydrovoltaic technology embraces almost all dynamic processes associated with water, including raining, waving, flowing, evaporating, and moisture adsorbing. This versatility in dealing with various forms of water and associated energy renders hydrovoltaic technology a solution for fossil fuel-caused environmental problems. Here, we review the current progress of hydrovoltaic energy harvesting from water motion, evaporation, and ambient moisture. Device configuration, energy conversion mechanism mediated by mechanical-electric coupling at various water-solid interfaces, as well as materials selection and functionalization are discussed. Useful strategies guided by established mechanisms for device optimization are then covered. Finally, we provide an outlook on this emerging field and outline the challenges of improving output performance toward potential practical applications.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c07900\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c07900","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

地球上的自然水循环蕴含着巨大的能量,因为到达地球表面的太阳能有 35% 进入了水中。然而,水力发电厂只收集了所含能量中非常微小的一部分,主要是大量散装水的动能。水循环中的自然过程,如降雨、水蒸发和湿气吸附,非常普遍,但由于缺乏适当的技术,过去一直没有得到充分利用。在过去十年中,水伏特技术的出现为扩大从水循环中获取能量的技术能力提供了越来越多的机会。水伏特技术的特点是通过水-固界面的机械-电气耦合发电,它几乎涵盖了所有与水有关的动态过程,包括下雨、挥发、流动、蒸发和吸湿。这种处理各种形式的水和相关能量的多功能性使水力伏打技术成为化石燃料造成的环境问题的一种解决方案。在此,我们回顾了目前从水运动、蒸发和环境湿度中获取水伏特能量的进展情况。我们讨论了设备配置、各种水固界面机械电耦合介导的能量转换机制,以及材料选择和功能化。然后还介绍了在既定机制指导下进行设备优化的有用策略。最后,我们对这一新兴领域进行了展望,并概述了提高输出性能以实现潜在实际应用所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrovoltaic Effects from Mechanical-Electric Coupling at the Water-Solid Interface.

The natural water cycle on the Earth carries an enormous amount of energy as thirty-five percent of solar energy reaching the Earth's surface goes into water. However, only a very marginal part of the contained energy, mostly kinetic energy of large volume bulk water, is harvested by hydroelectric power plants. Natural processes in the water cycle, such as rainfall, water evaporation, and moisture adsorption, are widespread but have remained underexploited in the past due to the lack of appropriate technologies. In the past decade, the emergence of hydrovoltaic technology has provided ever-increasing opportunities to extend the technical capability for energy harvesting from the water cycle. Featuring electricity generation from mechanical-electric coupling at the water-solid interface, hydrovoltaic technology embraces almost all dynamic processes associated with water, including raining, waving, flowing, evaporating, and moisture adsorbing. This versatility in dealing with various forms of water and associated energy renders hydrovoltaic technology a solution for fossil fuel-caused environmental problems. Here, we review the current progress of hydrovoltaic energy harvesting from water motion, evaporation, and ambient moisture. Device configuration, energy conversion mechanism mediated by mechanical-electric coupling at various water-solid interfaces, as well as materials selection and functionalization are discussed. Useful strategies guided by established mechanisms for device optimization are then covered. Finally, we provide an outlook on this emerging field and outline the challenges of improving output performance toward potential practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Liquid Metal Oxide-Assisted Integration of High-k Dielectrics and Metal Contacts for Two-Dimensional Electronics High-Density Atomically Dispersed Metals Activate Adjacent Nitrogen/Carbon Sites for Efficient Ammonia Electrosynthesis from Nitrate Molten Salt Modulation of Potassium–Nitrogen–Carbon for the Breaking Kinetics Bottleneck of Photocatalytic Overall Water Splitting and Environmental Impact Reduction Structure and Defect Identification at Self-Assembled Islands of CO2 Using Scanning Probe Microscopy Monomer Composition as a Mechanism to Control the Self-Assembly of Diblock Oligomeric Peptide–Polymer Amphiphiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1