在机器学习的帮助下,构建顺式-1,4-聚异戊二烯结构和热力学一致性的可温度转移粗粒度模型

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-08-18 DOI:10.1016/j.polymer.2024.127516
{"title":"在机器学习的帮助下,构建顺式-1,4-聚异戊二烯结构和热力学一致性的可温度转移粗粒度模型","authors":"","doi":"10.1016/j.polymer.2024.127516","DOIUrl":null,"url":null,"abstract":"<div><p>Polyisoprene (PI) is a widely used polymer and constructing a systematic coarse-grained (CG) PI model with the structural and thermodynamic consistency with the underlying atomic model over a wide range of thermodynamic conditions is very important for the predictive capability of CG model on overall properties of PI polymer materials and the establishment of their structure-property relationship. However, as the number of tunable CG potential parameters and target properties grows, traditional parameter tuning methods become impractical. In this work, we present a novel approach for determining the optimal CGPI non-bonded potential parameters by employing Particle Swarm Optimization as the calibrator with machine learning-based models trained using molecular dynamics data. The resulting CG model is further augmented with temperature factors through a multistate parameterization approach. This enhancement ensures the model's temperature transferability of structure and thermodynamics in a wide temperature of <span><math><mrow><mn>150</mn><mi>K</mi><mo>∼</mo><mn>750</mn><mi>K</mi></mrow></math></span>.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing a temperature transferable coarse-grained model of cis-1,4-polyisoprene with the structural and thermodynamic consistency aided by machine learning\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polyisoprene (PI) is a widely used polymer and constructing a systematic coarse-grained (CG) PI model with the structural and thermodynamic consistency with the underlying atomic model over a wide range of thermodynamic conditions is very important for the predictive capability of CG model on overall properties of PI polymer materials and the establishment of their structure-property relationship. However, as the number of tunable CG potential parameters and target properties grows, traditional parameter tuning methods become impractical. In this work, we present a novel approach for determining the optimal CGPI non-bonded potential parameters by employing Particle Swarm Optimization as the calibrator with machine learning-based models trained using molecular dynamics data. The resulting CG model is further augmented with temperature factors through a multistate parameterization approach. This enhancement ensures the model's temperature transferability of structure and thermodynamics in a wide temperature of <span><math><mrow><mn>150</mn><mi>K</mi><mo>∼</mo><mn>750</mn><mi>K</mi></mrow></math></span>.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124008528\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124008528","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

聚异戊二烯(PI)是一种广泛使用的聚合物,构建一个系统的粗粒度(CG)PI 模型,使其在广泛的热力学条件下与基础原子模型在结构和热力学上保持一致,对于 CG 模型预测 PI 聚合物材料的整体性能以及建立其结构-性能关系非常重要。然而,随着可调谐 CG 势参数和目标特性数量的增加,传统的参数调谐方法变得不切实际。在这项工作中,我们提出了一种确定 CGPI 非键势参数最佳值的新方法,即采用粒子群优化作为校准器,并使用分子动力学数据训练基于机器学习的模型。通过多态参数化方法,由此产生的 CG 模型进一步增加了温度因子。这种增强确保了模型在 150K∼750K 宽温度范围内结构和热力学的温度可转移性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing a temperature transferable coarse-grained model of cis-1,4-polyisoprene with the structural and thermodynamic consistency aided by machine learning

Polyisoprene (PI) is a widely used polymer and constructing a systematic coarse-grained (CG) PI model with the structural and thermodynamic consistency with the underlying atomic model over a wide range of thermodynamic conditions is very important for the predictive capability of CG model on overall properties of PI polymer materials and the establishment of their structure-property relationship. However, as the number of tunable CG potential parameters and target properties grows, traditional parameter tuning methods become impractical. In this work, we present a novel approach for determining the optimal CGPI non-bonded potential parameters by employing Particle Swarm Optimization as the calibrator with machine learning-based models trained using molecular dynamics data. The resulting CG model is further augmented with temperature factors through a multistate parameterization approach. This enhancement ensures the model's temperature transferability of structure and thermodynamics in a wide temperature of 150K750K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Direct ink writing of customized polymeric structures embedded in a nano-silicate based supporting matrix Polymer coating by oxidative polymerization of a new dopamine analogue with two amino groups High ferroelectric performance of poly (vinylidene difluoride-co-hexafluoropropylene) - based membranes enabled by electrospinning and multilayer lamination Design of flexible polyethylene glycol-based phase change materials by crystal structure regulation Adsorption behavior and mechanism of NH2-MIL-101(Cr)@COFs@SA composite adsorbent for tetracycline removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1