William G. Ryder, Aviva Levina, Marcus E. Graziotto, Bryson A. Hawkins, David E. Hibbs, Elizabeth J. New, Philip A. Gale
{"title":"亚细胞靶向阴离子转运体","authors":"William G. Ryder, Aviva Levina, Marcus E. Graziotto, Bryson A. Hawkins, David E. Hibbs, Elizabeth J. New, Philip A. Gale","doi":"10.1016/j.chempr.2024.07.009","DOIUrl":null,"url":null,"abstract":"<p>Synthetic anion transporters that mediate electroneutral (H<sup>+</sup>/Cl<sup>−</sup>) transport have demonstrated anti-cancer activity due to their ability to disrupt subcellular homeostatic environments. Elucidation of the cell death mechanism revealed the transporters’ ability to neutralize lysosomal pH gradients and inhibit autophagy. However, their effects on other subcellular compartments are unknown. Herein, we disclose the first subcellular targeted anionophores that accumulate in various membrane-bound organelles to bias their natural propensity to depolarize lysosomes. Confocal microscopy revealed that the naphthalimide-based transporters effectively localized within their intended organelles. Analogs containing endoplasmic reticulum (ER) and lysosomal targeting motifs showed an enhanced H<sup>+</sup>/Cl<sup>−</sup> transport ability and greater cytotoxicity compared with non-targeted analogs. Moreover, lysosomal accumulation improved cancer cell selectivity, while ER and mitochondrial localization enhanced apoptosis in cancer cells. Our work provides an alternative approach to the design of therapeutically focused synthetic anion transporters and an insight into possible subcellular compartment-specific effects on homeostasis.</p>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subcellular targeted anion transporters\",\"authors\":\"William G. Ryder, Aviva Levina, Marcus E. Graziotto, Bryson A. Hawkins, David E. Hibbs, Elizabeth J. New, Philip A. Gale\",\"doi\":\"10.1016/j.chempr.2024.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synthetic anion transporters that mediate electroneutral (H<sup>+</sup>/Cl<sup>−</sup>) transport have demonstrated anti-cancer activity due to their ability to disrupt subcellular homeostatic environments. Elucidation of the cell death mechanism revealed the transporters’ ability to neutralize lysosomal pH gradients and inhibit autophagy. However, their effects on other subcellular compartments are unknown. Herein, we disclose the first subcellular targeted anionophores that accumulate in various membrane-bound organelles to bias their natural propensity to depolarize lysosomes. Confocal microscopy revealed that the naphthalimide-based transporters effectively localized within their intended organelles. Analogs containing endoplasmic reticulum (ER) and lysosomal targeting motifs showed an enhanced H<sup>+</sup>/Cl<sup>−</sup> transport ability and greater cytotoxicity compared with non-targeted analogs. Moreover, lysosomal accumulation improved cancer cell selectivity, while ER and mitochondrial localization enhanced apoptosis in cancer cells. Our work provides an alternative approach to the design of therapeutically focused synthetic anion transporters and an insight into possible subcellular compartment-specific effects on homeostasis.</p>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.07.009\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.07.009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
介导电中性(H+/Cl-)转运的合成阴离子转运体具有破坏亚细胞平衡环境的能力,因而具有抗癌活性。对细胞死亡机制的阐明表明,转运体能够中和溶酶体的 pH 梯度并抑制自噬。然而,它们对其他亚细胞区室的影响尚不清楚。在此,我们首次揭示了亚细胞靶向阴离子载体,这种载体在各种膜结合细胞器中积聚,使溶酶体的自然去极化倾向发生偏移。共聚焦显微镜显示,基于萘二甲酰亚胺的转运体有效地定位在其目标细胞器内。与非靶向类似物相比,含有内质网(ER)和溶酶体靶向基团的类似物显示出更强的 H+/Cl- 转运能力和更大的细胞毒性。此外,溶酶体积聚提高了癌细胞的选择性,而 ER 和线粒体定位则增强了癌细胞的凋亡。我们的工作为设计具有治疗作用的合成阴离子转运体提供了另一种方法,并使我们深入了解了亚细胞区室对稳态的特异性影响。
Synthetic anion transporters that mediate electroneutral (H+/Cl−) transport have demonstrated anti-cancer activity due to their ability to disrupt subcellular homeostatic environments. Elucidation of the cell death mechanism revealed the transporters’ ability to neutralize lysosomal pH gradients and inhibit autophagy. However, their effects on other subcellular compartments are unknown. Herein, we disclose the first subcellular targeted anionophores that accumulate in various membrane-bound organelles to bias their natural propensity to depolarize lysosomes. Confocal microscopy revealed that the naphthalimide-based transporters effectively localized within their intended organelles. Analogs containing endoplasmic reticulum (ER) and lysosomal targeting motifs showed an enhanced H+/Cl− transport ability and greater cytotoxicity compared with non-targeted analogs. Moreover, lysosomal accumulation improved cancer cell selectivity, while ER and mitochondrial localization enhanced apoptosis in cancer cells. Our work provides an alternative approach to the design of therapeutically focused synthetic anion transporters and an insight into possible subcellular compartment-specific effects on homeostasis.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.