Henrik Finsberg, Verena Charwat, Kevin E Healy, Samuel T Wall
{"title":"自动运动估计并应用于 hiPSC-CM。","authors":"Henrik Finsberg, Verena Charwat, Kevin E Healy, Samuel T Wall","doi":"10.1088/2057-1976/ad7268","DOIUrl":null,"url":null,"abstract":"<p><p>Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are an effective tool for studying cardiac function and disease, and hold promise for screening drug effects on human tissue. Understanding alterations in motion patterns within these cells is crucial for comprehending how the administration of a drug or the onset of a disease can impact the rhythm of the human heart. However, quantifying motion accurately and efficiently from optical measurements using microscopy is currently time consuming. In this work, we present a unified framework for performing motion analysis on a sequence of microscopically obtained images of tissues consisting of hiPSC-CMs. We provide validation of our developed software using a synthetic test case and show how it can be used to extract displacements and velocities in hiPSC-CM microtissues. Finally, we show how to apply the framework to quantify the effect of an inotropic compound. The described software system is distributed as a python package that is easy to install, well tested and can be integrated into any python workflow.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic motion estimation with applications to hiPSC-CMs.\",\"authors\":\"Henrik Finsberg, Verena Charwat, Kevin E Healy, Samuel T Wall\",\"doi\":\"10.1088/2057-1976/ad7268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are an effective tool for studying cardiac function and disease, and hold promise for screening drug effects on human tissue. Understanding alterations in motion patterns within these cells is crucial for comprehending how the administration of a drug or the onset of a disease can impact the rhythm of the human heart. However, quantifying motion accurately and efficiently from optical measurements using microscopy is currently time consuming. In this work, we present a unified framework for performing motion analysis on a sequence of microscopically obtained images of tissues consisting of hiPSC-CMs. We provide validation of our developed software using a synthetic test case and show how it can be used to extract displacements and velocities in hiPSC-CM microtissues. Finally, we show how to apply the framework to quantify the effect of an inotropic compound. The described software system is distributed as a python package that is easy to install, well tested and can be integrated into any python workflow.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad7268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad7268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Automatic motion estimation with applications to hiPSC-CMs.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are an effective tool for studying cardiac function and disease, and hold promise for screening drug effects on human tissue. Understanding alterations in motion patterns within these cells is crucial for comprehending how the administration of a drug or the onset of a disease can impact the rhythm of the human heart. However, quantifying motion accurately and efficiently from optical measurements using microscopy is currently time consuming. In this work, we present a unified framework for performing motion analysis on a sequence of microscopically obtained images of tissues consisting of hiPSC-CMs. We provide validation of our developed software using a synthetic test case and show how it can be used to extract displacements and velocities in hiPSC-CM microtissues. Finally, we show how to apply the framework to quantify the effect of an inotropic compound. The described software system is distributed as a python package that is easy to install, well tested and can be integrated into any python workflow.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.