自动运动估计并应用于 hiPSC-CM。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-09-05 DOI:10.1088/2057-1976/ad7268
Henrik Finsberg, Verena Charwat, Kevin E Healy, Samuel T Wall
{"title":"自动运动估计并应用于 hiPSC-CM。","authors":"Henrik Finsberg, Verena Charwat, Kevin E Healy, Samuel T Wall","doi":"10.1088/2057-1976/ad7268","DOIUrl":null,"url":null,"abstract":"<p><p>Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are an effective tool for studying cardiac function and disease, and hold promise for screening drug effects on human tissue. Understanding alterations in motion patterns within these cells is crucial for comprehending how the administration of a drug or the onset of a disease can impact the rhythm of the human heart. However, quantifying motion accurately and efficiently from optical measurements using microscopy is currently time consuming. In this work, we present a unified framework for performing motion analysis on a sequence of microscopically obtained images of tissues consisting of hiPSC-CMs. We provide validation of our developed software using a synthetic test case and show how it can be used to extract displacements and velocities in hiPSC-CM microtissues. Finally, we show how to apply the framework to quantify the effect of an inotropic compound. The described software system is distributed as a python package that is easy to install, well tested and can be integrated into any python workflow.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic motion estimation with applications to hiPSC-CMs.\",\"authors\":\"Henrik Finsberg, Verena Charwat, Kevin E Healy, Samuel T Wall\",\"doi\":\"10.1088/2057-1976/ad7268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are an effective tool for studying cardiac function and disease, and hold promise for screening drug effects on human tissue. Understanding alterations in motion patterns within these cells is crucial for comprehending how the administration of a drug or the onset of a disease can impact the rhythm of the human heart. However, quantifying motion accurately and efficiently from optical measurements using microscopy is currently time consuming. In this work, we present a unified framework for performing motion analysis on a sequence of microscopically obtained images of tissues consisting of hiPSC-CMs. We provide validation of our developed software using a synthetic test case and show how it can be used to extract displacements and velocities in hiPSC-CM microtissues. Finally, we show how to apply the framework to quantify the effect of an inotropic compound. The described software system is distributed as a python package that is easy to install, well tested and can be integrated into any python workflow.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad7268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad7268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

人类诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)是研究心脏功能和疾病的有效工具,并有望用于筛选药物对人体组织的影响。了解这些细胞内运动模式的变化,对于理解用药或疾病发作如何影响人体心脏节律至关重要。然而,目前使用显微镜从光学测量中准确有效地量化运动非常耗时。在这项工作中,我们提出了一个统一的框架,用于对显微镜下获得的由 hiPSC-CMs 组成的组织图像序列进行运动分析。我们使用一个合成测试案例对所开发的软件进行了验证,并展示了如何使用该软件提取 hiPSC-CM 显微组织中的位移和速度。最后,我们展示了如何应用该框架来量化各向同性化合物的影响。所述软件系统以 python 软件包的形式发布,易于安装、测试良好,可集成到任何 python 工作流程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic motion estimation with applications to hiPSC-CMs.

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are an effective tool for studying cardiac function and disease, and hold promise for screening drug effects on human tissue. Understanding alterations in motion patterns within these cells is crucial for comprehending how the administration of a drug or the onset of a disease can impact the rhythm of the human heart. However, quantifying motion accurately and efficiently from optical measurements using microscopy is currently time consuming. In this work, we present a unified framework for performing motion analysis on a sequence of microscopically obtained images of tissues consisting of hiPSC-CMs. We provide validation of our developed software using a synthetic test case and show how it can be used to extract displacements and velocities in hiPSC-CM microtissues. Finally, we show how to apply the framework to quantify the effect of an inotropic compound. The described software system is distributed as a python package that is easy to install, well tested and can be integrated into any python workflow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Dose compensation for decreased biological effective dose due to intrafractional interruption during radiotherapy: integration with a commercial treatment planning system. Open-window MSR Design with Active Magnetic Compensation Coil based on COMSOL Multiphysics. A new method to assess the performance of anti-scatter grids in x-ray projection imaging. Effect of tissue viscoelasticity on delivered mechanical power in a physical respiratory system model: distinguishing between airway and tissue resistance. Local field potential-based brain-machine interface to inhibit epileptic seizures by spinal cord electrical stimulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1