对 CaF2-MgF2 二元氟化物体系在高温下的结构、热力学和传输特性的计算见解

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-24 DOI:10.1016/j.commatsci.2024.113294
{"title":"对 CaF2-MgF2 二元氟化物体系在高温下的结构、热力学和传输特性的计算见解","authors":"","doi":"10.1016/j.commatsci.2024.113294","DOIUrl":null,"url":null,"abstract":"<div><p>The structural, thermodynamic and transport properties of the CaF<sub>2</sub>-MgF<sub>2</sub> molten salt system were investigated with ab initio molecular dynamics (AIMD), system-specific neural network interatomic potentials (NNIPs) and universal PreFerred Potentials (PFP). We trained an NNIP model using AIMD data as input and used this potential to efficiently simulate the interactions within a large supercell in a temperature range of 1273–1773 K. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code was employed to validate our trained NNIP model. The Matlantis software with universal PFP is also presented to prove its feasibility for MD calculations and can be considered as a useful alternative simulation tool for higher-order systems where existing potentials are not readily available. We calculated structural and thermodynamic properties including radial distribution function (RDF), angular distribution function (ADF), specific heat capacity, ionic self-diffusivity, and viscosity. Our results indicate that the system exhibited a high degree of structural disorder, with the Ca, Mg, and F ions forming a liquid solution. Using PFP, the positions of the first peak in RDFs for Ca-F and Mg-F pairs are only slightly left-shifted (&lt;0.05 Å), and the estimated viscosity of the melt decreases from 4.613 mPa·s to 1.846 mPa·s with an increase in temperature from 1273 K to 1773 K, in agreement with the NNIP trained specifically for CaF<sub>2</sub>-MgF<sub>2</sub>. Our results provide valuable insights into the properties of the CaF<sub>2</sub>-MgF<sub>2</sub> system at high temperatures and serve as predictive models for the development of new electrolytes that could be used for silicon epitaxy by adding silica.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational insights into the structural, thermodynamic and transport properties of CaF2-MgF2 binary fluoride system at high temperatures\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The structural, thermodynamic and transport properties of the CaF<sub>2</sub>-MgF<sub>2</sub> molten salt system were investigated with ab initio molecular dynamics (AIMD), system-specific neural network interatomic potentials (NNIPs) and universal PreFerred Potentials (PFP). We trained an NNIP model using AIMD data as input and used this potential to efficiently simulate the interactions within a large supercell in a temperature range of 1273–1773 K. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code was employed to validate our trained NNIP model. The Matlantis software with universal PFP is also presented to prove its feasibility for MD calculations and can be considered as a useful alternative simulation tool for higher-order systems where existing potentials are not readily available. We calculated structural and thermodynamic properties including radial distribution function (RDF), angular distribution function (ADF), specific heat capacity, ionic self-diffusivity, and viscosity. Our results indicate that the system exhibited a high degree of structural disorder, with the Ca, Mg, and F ions forming a liquid solution. Using PFP, the positions of the first peak in RDFs for Ca-F and Mg-F pairs are only slightly left-shifted (&lt;0.05 Å), and the estimated viscosity of the melt decreases from 4.613 mPa·s to 1.846 mPa·s with an increase in temperature from 1273 K to 1773 K, in agreement with the NNIP trained specifically for CaF<sub>2</sub>-MgF<sub>2</sub>. Our results provide valuable insights into the properties of the CaF<sub>2</sub>-MgF<sub>2</sub> system at high temperatures and serve as predictive models for the development of new electrolytes that could be used for silicon epitaxy by adding silica.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005159\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005159","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们利用自证分子动力学(AIMD)、特定系统神经网络原子间位势(NNIP)和通用预前导位势(PFP)研究了 CaF2-MgF2 熔盐体系的结构、热力学和传输特性。我们使用 AIMD 数据作为输入,训练了一个 NNIP 模型,并使用该势垒在 1273-1773 K 的温度范围内有效地模拟了大型超级胞体内的相互作用。此外,我们还介绍了具有通用 PFP 的 Matlantis 软件,以证明其在 MD 计算中的可行性,该软件可被视为一种有用的替代模拟工具,适用于现有势能不可用的高阶系统。我们计算了结构和热力学性质,包括径向分布函数(RDF)、角分布函数(ADF)、比热容、离子自扩散率和粘度。结果表明,该体系呈现出高度的结构紊乱,钙、镁和钙离子形成了液态溶液。使用 PFP,Ca-F 和 Mg-F 对的 RDFs 中第一个峰的位置仅有轻微左移(<0.05 Å),随着温度从 1273 K 升至 1773 K,熔体的估计粘度从 4.613 mPa-s 降至 1.846 mPa-s,这与专门为 CaF2-MgF2 训练的 NNIP 一致。我们的研究结果为了解 CaF2-MgF2 系统在高温下的特性提供了宝贵的见解,并可作为开发新电解质的预测模型,通过添加二氧化硅,这些电解质可用于硅外延。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational insights into the structural, thermodynamic and transport properties of CaF2-MgF2 binary fluoride system at high temperatures

The structural, thermodynamic and transport properties of the CaF2-MgF2 molten salt system were investigated with ab initio molecular dynamics (AIMD), system-specific neural network interatomic potentials (NNIPs) and universal PreFerred Potentials (PFP). We trained an NNIP model using AIMD data as input and used this potential to efficiently simulate the interactions within a large supercell in a temperature range of 1273–1773 K. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code was employed to validate our trained NNIP model. The Matlantis software with universal PFP is also presented to prove its feasibility for MD calculations and can be considered as a useful alternative simulation tool for higher-order systems where existing potentials are not readily available. We calculated structural and thermodynamic properties including radial distribution function (RDF), angular distribution function (ADF), specific heat capacity, ionic self-diffusivity, and viscosity. Our results indicate that the system exhibited a high degree of structural disorder, with the Ca, Mg, and F ions forming a liquid solution. Using PFP, the positions of the first peak in RDFs for Ca-F and Mg-F pairs are only slightly left-shifted (<0.05 Å), and the estimated viscosity of the melt decreases from 4.613 mPa·s to 1.846 mPa·s with an increase in temperature from 1273 K to 1773 K, in agreement with the NNIP trained specifically for CaF2-MgF2. Our results provide valuable insights into the properties of the CaF2-MgF2 system at high temperatures and serve as predictive models for the development of new electrolytes that could be used for silicon epitaxy by adding silica.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1