氢基础设施定量风险分析技术综述

IF 3.6 3区 工程技术 Q2 ENGINEERING, CHEMICAL Journal of Loss Prevention in The Process Industries Pub Date : 2024-08-08 DOI:10.1016/j.jlp.2024.105403
{"title":"氢基础设施定量风险分析技术综述","authors":"","doi":"10.1016/j.jlp.2024.105403","DOIUrl":null,"url":null,"abstract":"<div><p>This paper outlines the challenges and opportunities involved in developing a safe and sustainable hydrogen infrastructure. The growing global energy demand and environmental impacts of fossil fuels have sparked interest in alternative energy sources. Hydrogen, as an environmentally friendly and sustainable energy carrier, offers a promising solution. However, the widespread adoption of hydrogen technologies faces significant safety and data reliability challenges. This paper reviews existing literature on hydrogen safety, encompassing hydrogen leak diffusion, fire and explosion, hydrogen deflagration to detonation transition (DDT), risk assessments, and mitigation techniques associated with different hydrogen facilities. Multiple approaches, including probabilistic risk analysis, computational fluid dynamics (CFD), experimental measurements, and machine learning algorithms (MLAs), to ensure hydrogen safety are also explored. Existing hydrogen-related accidents are also extensively analysed. Despite the progress in hydrogen safety research, challenges and limitations still exist. These include a lack of reliable data, limited AI applications due to data availability issues, the need for safe and economic hydrogen storage, and the importance of providing personnel with adequate safety awareness and knowledge. Moreover, the article identifies future research opportunities in investigating auto-ignition mechanisms, collecting more experimental data, integrating AI and CFD to investigate hydrogen dispersion behaviour, exploring the sensor's technology, developing inherently safer designs, and studying the integrated impacts of evolving accident scenarios. In conclusion, the paper emphasises the importance of addressing safety challenges to establish a secure and dependable hydrogen infrastructure. It highlights the need for further research to enhance safety protocols, establish robust standards, and support the long-term sustainability goals of the hydrogen industry. The insights provided in this study can contribute to identifying research areas, improving safety measures, and developing future hydrogen infrastructure.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S095042302400161X/pdfft?md5=7a568f9a5f9ccbe67c4602b981e2270a&pid=1-s2.0-S095042302400161X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A technical review on quantitative risk analysis for hydrogen infrastructure\",\"authors\":\"\",\"doi\":\"10.1016/j.jlp.2024.105403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper outlines the challenges and opportunities involved in developing a safe and sustainable hydrogen infrastructure. The growing global energy demand and environmental impacts of fossil fuels have sparked interest in alternative energy sources. Hydrogen, as an environmentally friendly and sustainable energy carrier, offers a promising solution. However, the widespread adoption of hydrogen technologies faces significant safety and data reliability challenges. This paper reviews existing literature on hydrogen safety, encompassing hydrogen leak diffusion, fire and explosion, hydrogen deflagration to detonation transition (DDT), risk assessments, and mitigation techniques associated with different hydrogen facilities. Multiple approaches, including probabilistic risk analysis, computational fluid dynamics (CFD), experimental measurements, and machine learning algorithms (MLAs), to ensure hydrogen safety are also explored. Existing hydrogen-related accidents are also extensively analysed. Despite the progress in hydrogen safety research, challenges and limitations still exist. These include a lack of reliable data, limited AI applications due to data availability issues, the need for safe and economic hydrogen storage, and the importance of providing personnel with adequate safety awareness and knowledge. Moreover, the article identifies future research opportunities in investigating auto-ignition mechanisms, collecting more experimental data, integrating AI and CFD to investigate hydrogen dispersion behaviour, exploring the sensor's technology, developing inherently safer designs, and studying the integrated impacts of evolving accident scenarios. In conclusion, the paper emphasises the importance of addressing safety challenges to establish a secure and dependable hydrogen infrastructure. It highlights the need for further research to enhance safety protocols, establish robust standards, and support the long-term sustainability goals of the hydrogen industry. The insights provided in this study can contribute to identifying research areas, improving safety measures, and developing future hydrogen infrastructure.</p></div>\",\"PeriodicalId\":16291,\"journal\":{\"name\":\"Journal of Loss Prevention in The Process Industries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S095042302400161X/pdfft?md5=7a568f9a5f9ccbe67c4602b981e2270a&pid=1-s2.0-S095042302400161X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Loss Prevention in The Process Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095042302400161X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095042302400161X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了发展安全、可持续的氢能基础设施所面临的挑战和机遇。全球日益增长的能源需求和化石燃料对环境的影响引发了人们对替代能源的兴趣。氢作为一种环保和可持续的能源载体,提供了一种前景广阔的解决方案。然而,氢技术的广泛应用面临着安全和数据可靠性方面的巨大挑战。本文回顾了有关氢气安全的现有文献,包括氢气泄漏扩散、火灾和爆炸、氢气爆燃到爆炸的转变(DDT)、风险评估以及与不同氢气设施相关的缓解技术。此外,还探讨了确保氢安全的多种方法,包括概率风险分析、计算流体动力学(CFD)、实验测量和机器学习算法(MLA)。此外,还广泛分析了现有的氢气相关事故。尽管氢气安全研究取得了进展,但挑战和限制依然存在。其中包括缺乏可靠的数据、由于数据可用性问题导致人工智能应用有限、需要安全经济的氢气存储,以及为人员提供足够的安全意识和知识的重要性。此外,文章还指出了未来在以下方面的研究机会:调查自动点火机制、收集更多实验数据、整合人工智能和 CFD 以调查氢气扩散行为、探索传感器技术、开发本质上更安全的设计,以及研究不断变化的事故情景的综合影响。总之,本文强调了应对安全挑战以建立安全可靠的氢基础设施的重要性。它强调了进一步研究的必要性,以加强安全协议,建立健全的标准,并支持氢能产业的长期可持续发展目标。本研究提供的见解有助于确定研究领域、改进安全措施和开发未来的氢能基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A technical review on quantitative risk analysis for hydrogen infrastructure

This paper outlines the challenges and opportunities involved in developing a safe and sustainable hydrogen infrastructure. The growing global energy demand and environmental impacts of fossil fuels have sparked interest in alternative energy sources. Hydrogen, as an environmentally friendly and sustainable energy carrier, offers a promising solution. However, the widespread adoption of hydrogen technologies faces significant safety and data reliability challenges. This paper reviews existing literature on hydrogen safety, encompassing hydrogen leak diffusion, fire and explosion, hydrogen deflagration to detonation transition (DDT), risk assessments, and mitigation techniques associated with different hydrogen facilities. Multiple approaches, including probabilistic risk analysis, computational fluid dynamics (CFD), experimental measurements, and machine learning algorithms (MLAs), to ensure hydrogen safety are also explored. Existing hydrogen-related accidents are also extensively analysed. Despite the progress in hydrogen safety research, challenges and limitations still exist. These include a lack of reliable data, limited AI applications due to data availability issues, the need for safe and economic hydrogen storage, and the importance of providing personnel with adequate safety awareness and knowledge. Moreover, the article identifies future research opportunities in investigating auto-ignition mechanisms, collecting more experimental data, integrating AI and CFD to investigate hydrogen dispersion behaviour, exploring the sensor's technology, developing inherently safer designs, and studying the integrated impacts of evolving accident scenarios. In conclusion, the paper emphasises the importance of addressing safety challenges to establish a secure and dependable hydrogen infrastructure. It highlights the need for further research to enhance safety protocols, establish robust standards, and support the long-term sustainability goals of the hydrogen industry. The insights provided in this study can contribute to identifying research areas, improving safety measures, and developing future hydrogen infrastructure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
期刊最新文献
Research on the diffusion and control of unsafe behaviors among chemical industry park enterprises based on the SEIR evolutionary game model Experimental study on hydrogen pipeline leakage: Negative pressure wave characteristics and inline detection method A dynamic system reliability analysis model on safety instrumented systems Effect of ambient pressure on the fire characteristics of lithium-ion battery energy storage container Incident investigation of hydrogen explosion and fire in a residue desulfurization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1