{"title":"基于炭黑/银纳米线/石墨烯复合材料的多功能高性能电热膜","authors":"Zijian Wang, Wen Yu, Chaochao Gao, Zhenye Zhu, Jiaheng Zhang","doi":"10.1038/s41528-024-00336-w","DOIUrl":null,"url":null,"abstract":"Fabricating high-conductive composites and constructing highly conductive networks are crucial for high-performance electrothermal film. In this study, an Ag nanowires/graphene (Ag/G) composite synthesized by liquid-phase exfoliation and in-situ photoreduction is mixed with carbon black (CB) to form a composite conductive ink, and a CB/Ag/G composite electrothermal film with a point-line-plane three-dimensional microstructure is obtained via blade coating process. Both the addition of Ag nanowires and a subsequent compression rolling treatment induce the establishment of the effective conductive network in the film, endowing it with an outstanding conductivity of 399.4 S cm−1. The film reaches a Ts of 204 °C with an input voltage of 3.0 V, and is successfully applied in water heating and de-icing, demonstrating its extraordinary electrothermal performance and vast potential for practical applications. The film is also used as an electromagnetic shielding film and heat dissipation substrate, showing exceptional electromagnetic shielding (42.5 dB) and heat dissipation properties.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-10"},"PeriodicalIF":12.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00336-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Multifunctional and high-performance electrothermal films based on carbon black/Ag nanowires/graphene composites\",\"authors\":\"Zijian Wang, Wen Yu, Chaochao Gao, Zhenye Zhu, Jiaheng Zhang\",\"doi\":\"10.1038/s41528-024-00336-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fabricating high-conductive composites and constructing highly conductive networks are crucial for high-performance electrothermal film. In this study, an Ag nanowires/graphene (Ag/G) composite synthesized by liquid-phase exfoliation and in-situ photoreduction is mixed with carbon black (CB) to form a composite conductive ink, and a CB/Ag/G composite electrothermal film with a point-line-plane three-dimensional microstructure is obtained via blade coating process. Both the addition of Ag nanowires and a subsequent compression rolling treatment induce the establishment of the effective conductive network in the film, endowing it with an outstanding conductivity of 399.4 S cm−1. The film reaches a Ts of 204 °C with an input voltage of 3.0 V, and is successfully applied in water heating and de-icing, demonstrating its extraordinary electrothermal performance and vast potential for practical applications. The film is also used as an electromagnetic shielding film and heat dissipation substrate, showing exceptional electromagnetic shielding (42.5 dB) and heat dissipation properties.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00336-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00336-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00336-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
制造高导电复合材料和构建高导电网络对高性能电热膜至关重要。在本研究中,通过液相剥离和原位光还原合成了银纳米线/石墨烯(Ag/G)复合材料,并将其与炭黑(CB)混合形成复合导电墨水,通过叶片涂覆工艺获得了具有点-线-面三维微观结构的CB/Ag/G复合电热膜。银纳米线的加入和随后的压轧处理都促使薄膜中有效导电网络的建立,使其具有 399.4 S cm-1 的出色电导率。在输入电压为 3.0 V 的情况下,薄膜的温度可达 204 °C,并成功应用于水加热和除冰,显示了其非凡的电热性能和巨大的实际应用潜力。该薄膜还可用作电磁屏蔽膜和散热基板,显示出卓越的电磁屏蔽(42.5 dB)和散热性能。
Multifunctional and high-performance electrothermal films based on carbon black/Ag nanowires/graphene composites
Fabricating high-conductive composites and constructing highly conductive networks are crucial for high-performance electrothermal film. In this study, an Ag nanowires/graphene (Ag/G) composite synthesized by liquid-phase exfoliation and in-situ photoreduction is mixed with carbon black (CB) to form a composite conductive ink, and a CB/Ag/G composite electrothermal film with a point-line-plane three-dimensional microstructure is obtained via blade coating process. Both the addition of Ag nanowires and a subsequent compression rolling treatment induce the establishment of the effective conductive network in the film, endowing it with an outstanding conductivity of 399.4 S cm−1. The film reaches a Ts of 204 °C with an input voltage of 3.0 V, and is successfully applied in water heating and de-icing, demonstrating its extraordinary electrothermal performance and vast potential for practical applications. The film is also used as an electromagnetic shielding film and heat dissipation substrate, showing exceptional electromagnetic shielding (42.5 dB) and heat dissipation properties.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.