铜绿假单胞菌 PA14 生物膜对次氯酸钠和环丙沙星敏感性增加的遗传决定因素。

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biofouling Pub Date : 2024-10-01 Epub Date: 2024-08-27 DOI:10.1080/08927014.2024.2395378
Waleska Stephanie da Cruz Nizer, Madison Elisabeth Adams, Megan Catherine Montgomery, Kira Noelle Allison, Carole Beaulieu, Joerg Overhage
{"title":"铜绿假单胞菌 PA14 生物膜对次氯酸钠和环丙沙星敏感性增加的遗传决定因素。","authors":"Waleska Stephanie da Cruz Nizer, Madison Elisabeth Adams, Megan Catherine Montgomery, Kira Noelle Allison, Carole Beaulieu, Joerg Overhage","doi":"10.1080/08927014.2024.2395378","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive chlorine species (RCS) like sodium hypochlorite (NaOCl) are potent oxidizing agents and widely used biocides in surface disinfection, water treatment, and biofilm elimination. Moreover, RCS are also produced by the human immune system to kill invading pathogens. However, bacteria have developed mechanisms to survive the damage caused by RCS. Using the comprehensive <i>Pseudomonas aeruginosa</i> PA14 transposon mutant library in a genetic screen, we identified a total of 28 <i>P. aeruginosa</i> PA14 mutants whose biofilms showed increased susceptibility to NaOCl in comparison to PA14 WT biofilms. Of these, ten PA14 mutants with a disrupted <i>apaH</i>, PA0793, <i>acsA</i>, PA1506, PA1547, PA3728, <i>yajC</i>, <i>queA</i>, PA3869, or PA14_32840 gene presented a 4-fold increase in NaOCl susceptibility compared to wild-type biofilms. While none of these mutants showed a defect in biofilm formation or attenuated susceptibility of biofilms toward the oxidant hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), all but PA14_32840 also exhibited a 2-4-fold increase in susceptibility toward the antibiotic ciprofloxacin. Further analyses revealed attenuated levels of intracellular ROS and catalase activity only for the <i>apaH</i> and PA1547 mutant, providing insights into the oxidative stress response in <i>P. aeruginosa</i> biofilms. The findings of this paper highlight the complexity of biofilm resistance and the intricate interplay between different mechanisms to survive oxidative stress. Understanding resistance strategies adopted by biofilms is crucial for developing more effective ways to fight resistant bacteria, ultimately contributing to better management of bacterial growth and resistance in clinical and environmental settings.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"563-579"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic determinants of increased sodium hypochlorite and ciprofloxacin susceptibility in <i>Pseudomonas aeruginosa</i> PA14 biofilms.\",\"authors\":\"Waleska Stephanie da Cruz Nizer, Madison Elisabeth Adams, Megan Catherine Montgomery, Kira Noelle Allison, Carole Beaulieu, Joerg Overhage\",\"doi\":\"10.1080/08927014.2024.2395378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reactive chlorine species (RCS) like sodium hypochlorite (NaOCl) are potent oxidizing agents and widely used biocides in surface disinfection, water treatment, and biofilm elimination. Moreover, RCS are also produced by the human immune system to kill invading pathogens. However, bacteria have developed mechanisms to survive the damage caused by RCS. Using the comprehensive <i>Pseudomonas aeruginosa</i> PA14 transposon mutant library in a genetic screen, we identified a total of 28 <i>P. aeruginosa</i> PA14 mutants whose biofilms showed increased susceptibility to NaOCl in comparison to PA14 WT biofilms. Of these, ten PA14 mutants with a disrupted <i>apaH</i>, PA0793, <i>acsA</i>, PA1506, PA1547, PA3728, <i>yajC</i>, <i>queA</i>, PA3869, or PA14_32840 gene presented a 4-fold increase in NaOCl susceptibility compared to wild-type biofilms. While none of these mutants showed a defect in biofilm formation or attenuated susceptibility of biofilms toward the oxidant hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), all but PA14_32840 also exhibited a 2-4-fold increase in susceptibility toward the antibiotic ciprofloxacin. Further analyses revealed attenuated levels of intracellular ROS and catalase activity only for the <i>apaH</i> and PA1547 mutant, providing insights into the oxidative stress response in <i>P. aeruginosa</i> biofilms. The findings of this paper highlight the complexity of biofilm resistance and the intricate interplay between different mechanisms to survive oxidative stress. Understanding resistance strategies adopted by biofilms is crucial for developing more effective ways to fight resistant bacteria, ultimately contributing to better management of bacterial growth and resistance in clinical and environmental settings.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"563-579\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2395378\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2395378","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

次氯酸钠(NaOCl)等活性氯物种(RCS)是强效氧化剂,广泛用于表面消毒、水处理和消除生物膜的杀菌剂。此外,人体免疫系统也会产生 RCS 来杀死入侵的病原体。然而,细菌已经开发出了在 RCS 造成的破坏下生存的机制。通过基因筛选铜绿假单胞菌 PA14 转座子突变体库,我们共鉴定出 28 个铜绿假单胞菌 PA14 突变体,与 PA14 WT 生物膜相比,这些突变体的生物膜对 NaOCl 的敏感性增加。其中,apaH、PA0793、acsA、PA1506、PA1547、PA3728、yajC、queA、PA3869 或 PA14_32840 基因被破坏的 10 个 PA14 突变体与野生型生物膜相比,对 NaOCl 的敏感性增加了 4 倍。虽然这些突变体都没有表现出生物膜形成缺陷或生物膜对氧化剂过氧化氢(H2O2)的敏感性减弱,但除了 PA14_32840 之外,所有突变体对抗生素环丙沙星的敏感性都增加了 2-4 倍。进一步的分析表明,只有 apaH 和 PA1547 突变体的细胞内 ROS 水平和过氧化氢酶活性有所降低,这为铜绿微囊藻生物膜中的氧化应激反应提供了深入的见解。本文的研究结果凸显了生物膜抗性的复杂性以及不同机制之间错综复杂的相互作用,从而在氧化应激下生存下来。了解生物膜采取的抗性策略对于开发更有效的方法来对抗抗性细菌至关重要,最终有助于更好地管理临床和环境中的细菌生长和抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic determinants of increased sodium hypochlorite and ciprofloxacin susceptibility in Pseudomonas aeruginosa PA14 biofilms.

Reactive chlorine species (RCS) like sodium hypochlorite (NaOCl) are potent oxidizing agents and widely used biocides in surface disinfection, water treatment, and biofilm elimination. Moreover, RCS are also produced by the human immune system to kill invading pathogens. However, bacteria have developed mechanisms to survive the damage caused by RCS. Using the comprehensive Pseudomonas aeruginosa PA14 transposon mutant library in a genetic screen, we identified a total of 28 P. aeruginosa PA14 mutants whose biofilms showed increased susceptibility to NaOCl in comparison to PA14 WT biofilms. Of these, ten PA14 mutants with a disrupted apaH, PA0793, acsA, PA1506, PA1547, PA3728, yajC, queA, PA3869, or PA14_32840 gene presented a 4-fold increase in NaOCl susceptibility compared to wild-type biofilms. While none of these mutants showed a defect in biofilm formation or attenuated susceptibility of biofilms toward the oxidant hydrogen peroxide (H2O2), all but PA14_32840 also exhibited a 2-4-fold increase in susceptibility toward the antibiotic ciprofloxacin. Further analyses revealed attenuated levels of intracellular ROS and catalase activity only for the apaH and PA1547 mutant, providing insights into the oxidative stress response in P. aeruginosa biofilms. The findings of this paper highlight the complexity of biofilm resistance and the intricate interplay between different mechanisms to survive oxidative stress. Understanding resistance strategies adopted by biofilms is crucial for developing more effective ways to fight resistant bacteria, ultimately contributing to better management of bacterial growth and resistance in clinical and environmental settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
期刊最新文献
Ozonized water as a promising strategy to remove biofilm formed by Pseudomonas spp. on polyethylene and polystyrene surfaces. Exploring the potential of hydrolytic enzymes combined with antibacterial agents to disrupt pathogenic biofilms and disinfect released cells. Anti-biofilm effect of ferulic acid against Enterobacter hormaechei and Klebsiella pneumoniae: in vitro and in silico investigation. Anti-biofouling marine diterpenoids from Okinawan soft corals. Effects of epigallocatechin gallate on the development of matrix-rich Streptococcus mutans biofilm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1