Waleska Stephanie da Cruz Nizer, Madison Elisabeth Adams, Megan Catherine Montgomery, Kira Noelle Allison, Carole Beaulieu, Joerg Overhage
{"title":"铜绿假单胞菌 PA14 生物膜对次氯酸钠和环丙沙星敏感性增加的遗传决定因素。","authors":"Waleska Stephanie da Cruz Nizer, Madison Elisabeth Adams, Megan Catherine Montgomery, Kira Noelle Allison, Carole Beaulieu, Joerg Overhage","doi":"10.1080/08927014.2024.2395378","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive chlorine species (RCS) like sodium hypochlorite (NaOCl) are potent oxidizing agents and widely used biocides in surface disinfection, water treatment, and biofilm elimination. Moreover, RCS are also produced by the human immune system to kill invading pathogens. However, bacteria have developed mechanisms to survive the damage caused by RCS. Using the comprehensive <i>Pseudomonas aeruginosa</i> PA14 transposon mutant library in a genetic screen, we identified a total of 28 <i>P. aeruginosa</i> PA14 mutants whose biofilms showed increased susceptibility to NaOCl in comparison to PA14 WT biofilms. Of these, ten PA14 mutants with a disrupted <i>apaH</i>, PA0793, <i>acsA</i>, PA1506, PA1547, PA3728, <i>yajC</i>, <i>queA</i>, PA3869, or PA14_32840 gene presented a 4-fold increase in NaOCl susceptibility compared to wild-type biofilms. While none of these mutants showed a defect in biofilm formation or attenuated susceptibility of biofilms toward the oxidant hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), all but PA14_32840 also exhibited a 2-4-fold increase in susceptibility toward the antibiotic ciprofloxacin. Further analyses revealed attenuated levels of intracellular ROS and catalase activity only for the <i>apaH</i> and PA1547 mutant, providing insights into the oxidative stress response in <i>P. aeruginosa</i> biofilms. The findings of this paper highlight the complexity of biofilm resistance and the intricate interplay between different mechanisms to survive oxidative stress. Understanding resistance strategies adopted by biofilms is crucial for developing more effective ways to fight resistant bacteria, ultimately contributing to better management of bacterial growth and resistance in clinical and environmental settings.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"563-579"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic determinants of increased sodium hypochlorite and ciprofloxacin susceptibility in <i>Pseudomonas aeruginosa</i> PA14 biofilms.\",\"authors\":\"Waleska Stephanie da Cruz Nizer, Madison Elisabeth Adams, Megan Catherine Montgomery, Kira Noelle Allison, Carole Beaulieu, Joerg Overhage\",\"doi\":\"10.1080/08927014.2024.2395378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reactive chlorine species (RCS) like sodium hypochlorite (NaOCl) are potent oxidizing agents and widely used biocides in surface disinfection, water treatment, and biofilm elimination. Moreover, RCS are also produced by the human immune system to kill invading pathogens. However, bacteria have developed mechanisms to survive the damage caused by RCS. Using the comprehensive <i>Pseudomonas aeruginosa</i> PA14 transposon mutant library in a genetic screen, we identified a total of 28 <i>P. aeruginosa</i> PA14 mutants whose biofilms showed increased susceptibility to NaOCl in comparison to PA14 WT biofilms. Of these, ten PA14 mutants with a disrupted <i>apaH</i>, PA0793, <i>acsA</i>, PA1506, PA1547, PA3728, <i>yajC</i>, <i>queA</i>, PA3869, or PA14_32840 gene presented a 4-fold increase in NaOCl susceptibility compared to wild-type biofilms. While none of these mutants showed a defect in biofilm formation or attenuated susceptibility of biofilms toward the oxidant hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), all but PA14_32840 also exhibited a 2-4-fold increase in susceptibility toward the antibiotic ciprofloxacin. Further analyses revealed attenuated levels of intracellular ROS and catalase activity only for the <i>apaH</i> and PA1547 mutant, providing insights into the oxidative stress response in <i>P. aeruginosa</i> biofilms. The findings of this paper highlight the complexity of biofilm resistance and the intricate interplay between different mechanisms to survive oxidative stress. Understanding resistance strategies adopted by biofilms is crucial for developing more effective ways to fight resistant bacteria, ultimately contributing to better management of bacterial growth and resistance in clinical and environmental settings.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"563-579\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2395378\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2395378","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genetic determinants of increased sodium hypochlorite and ciprofloxacin susceptibility in Pseudomonas aeruginosa PA14 biofilms.
Reactive chlorine species (RCS) like sodium hypochlorite (NaOCl) are potent oxidizing agents and widely used biocides in surface disinfection, water treatment, and biofilm elimination. Moreover, RCS are also produced by the human immune system to kill invading pathogens. However, bacteria have developed mechanisms to survive the damage caused by RCS. Using the comprehensive Pseudomonas aeruginosa PA14 transposon mutant library in a genetic screen, we identified a total of 28 P. aeruginosa PA14 mutants whose biofilms showed increased susceptibility to NaOCl in comparison to PA14 WT biofilms. Of these, ten PA14 mutants with a disrupted apaH, PA0793, acsA, PA1506, PA1547, PA3728, yajC, queA, PA3869, or PA14_32840 gene presented a 4-fold increase in NaOCl susceptibility compared to wild-type biofilms. While none of these mutants showed a defect in biofilm formation or attenuated susceptibility of biofilms toward the oxidant hydrogen peroxide (H2O2), all but PA14_32840 also exhibited a 2-4-fold increase in susceptibility toward the antibiotic ciprofloxacin. Further analyses revealed attenuated levels of intracellular ROS and catalase activity only for the apaH and PA1547 mutant, providing insights into the oxidative stress response in P. aeruginosa biofilms. The findings of this paper highlight the complexity of biofilm resistance and the intricate interplay between different mechanisms to survive oxidative stress. Understanding resistance strategies adopted by biofilms is crucial for developing more effective ways to fight resistant bacteria, ultimately contributing to better management of bacterial growth and resistance in clinical and environmental settings.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.