揭开增材制造 "绝对真理 "的神秘面纱

IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING CIRP Journal of Manufacturing Science and Technology Pub Date : 2024-08-28 DOI:10.1016/j.cirpj.2024.07.008
J.P. Oliveira , Telmo G. Santos
{"title":"揭开增材制造 \"绝对真理 \"的神秘面纱","authors":"J.P. Oliveira ,&nbsp;Telmo G. Santos","doi":"10.1016/j.cirpj.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>The hype around additive manufacturing technologies suggests that any complex shaped structure can be fabricated regardless of the type of material used. Moreover, it is often suggested that additive manufacturing processes will certainly disrupt the supply chain logistics and that everyone will be able to print on the demand at the comfort of their home. In this viewpoint, we describe and demystify some of the common assumptions associated with these set of technologies. We also show that conventional manufacturing processes cannot be fully replaced by additive manufacturing technologies, but rather there is a need for a complementarity between well-consolidated manufacturing technologies and additive manufacturing. While some of the contents presented here are basic for specialists working in the manufacturing field, we expect that this viewpoint can aid researchers working on topics related to additive manufacturing, but with less focus on the manufacturing aspects, helping them understand the actual limitations and advantages associated to these technologies. The four key issues that are addressed in this viewpoint, and their consequences, also intend to shape and mold future entrepreneurial efforts on additive manufacturing, as well as define future impacts (environmental, logistics, commercial and disruptive) associated to additive manufacturing technologies.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"54 ","pages":"Pages 57-62"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755581724001172/pdfft?md5=eefe1e804eba614443c5c58641b89e1d&pid=1-s2.0-S1755581724001172-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Demystifying “absolute truths” of additive manufacturing\",\"authors\":\"J.P. Oliveira ,&nbsp;Telmo G. Santos\",\"doi\":\"10.1016/j.cirpj.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hype around additive manufacturing technologies suggests that any complex shaped structure can be fabricated regardless of the type of material used. Moreover, it is often suggested that additive manufacturing processes will certainly disrupt the supply chain logistics and that everyone will be able to print on the demand at the comfort of their home. In this viewpoint, we describe and demystify some of the common assumptions associated with these set of technologies. We also show that conventional manufacturing processes cannot be fully replaced by additive manufacturing technologies, but rather there is a need for a complementarity between well-consolidated manufacturing technologies and additive manufacturing. While some of the contents presented here are basic for specialists working in the manufacturing field, we expect that this viewpoint can aid researchers working on topics related to additive manufacturing, but with less focus on the manufacturing aspects, helping them understand the actual limitations and advantages associated to these technologies. The four key issues that are addressed in this viewpoint, and their consequences, also intend to shape and mold future entrepreneurial efforts on additive manufacturing, as well as define future impacts (environmental, logistics, commercial and disruptive) associated to additive manufacturing technologies.</p></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":\"54 \",\"pages\":\"Pages 57-62\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1755581724001172/pdfft?md5=eefe1e804eba614443c5c58641b89e1d&pid=1-s2.0-S1755581724001172-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581724001172\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724001172","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

对快速成型制造技术的炒作表明,无论使用何种材料,都可以制造出任何复杂形状的结构。此外,人们还经常认为,快速成型制造工艺必将颠覆供应链物流,每个人都能在家中按需打印。在本文中,我们将描述并揭开与这些技术相关的一些常见假设的神秘面纱。我们还表明,传统制造工艺不能完全被快速成型制造技术所取代,而是需要在完善的制造技术和快速成型制造之间实现互补。虽然这里介绍的一些内容是制造领域专家的基本知识,但我们希望这一观点能够帮助研究与增材制造相关但不太关注制造方面的课题的研究人员,帮助他们了解与这些技术相关的实际限制和优势。本视角中涉及的四个关键问题及其后果,还将塑造和塑造未来的增材制造创业努力,并确定与增材制造技术相关的未来影响(环境、物流、商业和破坏性影响)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demystifying “absolute truths” of additive manufacturing

The hype around additive manufacturing technologies suggests that any complex shaped structure can be fabricated regardless of the type of material used. Moreover, it is often suggested that additive manufacturing processes will certainly disrupt the supply chain logistics and that everyone will be able to print on the demand at the comfort of their home. In this viewpoint, we describe and demystify some of the common assumptions associated with these set of technologies. We also show that conventional manufacturing processes cannot be fully replaced by additive manufacturing technologies, but rather there is a need for a complementarity between well-consolidated manufacturing technologies and additive manufacturing. While some of the contents presented here are basic for specialists working in the manufacturing field, we expect that this viewpoint can aid researchers working on topics related to additive manufacturing, but with less focus on the manufacturing aspects, helping them understand the actual limitations and advantages associated to these technologies. The four key issues that are addressed in this viewpoint, and their consequences, also intend to shape and mold future entrepreneurial efforts on additive manufacturing, as well as define future impacts (environmental, logistics, commercial and disruptive) associated to additive manufacturing technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
期刊最新文献
Resilience compass navigation through manufacturing organization uncertainty – A dynamic capabilities approach using mixed methods A structured digital twinning approach to improve decision-making in manufacturing SMEs Numerical simulation of molten pool flow behavior in ultrasonic vibration-assisted gas tungsten arc welding of low-alloy high-strength steel Hybrid FE-ML model for turning of 42CrMo4 steel Study on the effect of variable laser power on residual stress distribution in laser directed energy deposition of Ti6Al4V
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1