干旱诱导的矿物质养分可塑性有助于硬粒小麦的耐旱性鉴别

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-08-28 DOI:10.1016/j.plaphy.2024.109077
{"title":"干旱诱导的矿物质养分可塑性有助于硬粒小麦的耐旱性鉴别","authors":"","doi":"10.1016/j.plaphy.2024.109077","DOIUrl":null,"url":null,"abstract":"<div><p>Drought is a major challenge for the cultivation of durum wheat, a crucial crop for global food security. Plants respond to drought by adjusting their mineral nutrient profiles to cope with water scarcity, showing the importance of nutrient plasticity for plant acclimation and adaptation to diverse environments. Therefore, it is essential to understand the genetic basis of mineral nutrient profile plasticity in durum wheat under drought stress to select drought-tolerant varieties. The research study investigated the responses of different durum wheat genotypes to severe drought stress at the seedling stage. The study employed an ionomic, molecular, biochemical and physiological approach to shed light on distinct behaviors among different genotypes. The drought tolerance of SVEMS16, SVEVO, and BULEL was related to their capacity of maintaining or increasing nutrient's accumulation, while the limited nutrient acquisition capability of CRESO and S.CAP likely resulted in their susceptibility to drought. The study highlighted the importance of macronutrients such as SO<sub>4</sub><sup>2−</sup>, NO<sub>3</sub><sup>−</sup>, PO<sub>4</sub><sup>3−</sup>, and K<sup>+</sup> in stress resilience and identified variant-containing genes potentially influencing nutritional variations under drought. These findings provide valuable insights for further field studies to assess the drought tolerance of durum wheat genotypes across various growth stages, ultimately ensuring food security and sustainable production in the face of changing environmental conditions.</p></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0981942824007459/pdfft?md5=49cc74cd64cd4e194723059eb7d68dc2&pid=1-s2.0-S0981942824007459-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The drought-induced plasticity of mineral nutrients contributes to drought tolerance discrimination in durum wheat\",\"authors\":\"\",\"doi\":\"10.1016/j.plaphy.2024.109077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drought is a major challenge for the cultivation of durum wheat, a crucial crop for global food security. Plants respond to drought by adjusting their mineral nutrient profiles to cope with water scarcity, showing the importance of nutrient plasticity for plant acclimation and adaptation to diverse environments. Therefore, it is essential to understand the genetic basis of mineral nutrient profile plasticity in durum wheat under drought stress to select drought-tolerant varieties. The research study investigated the responses of different durum wheat genotypes to severe drought stress at the seedling stage. The study employed an ionomic, molecular, biochemical and physiological approach to shed light on distinct behaviors among different genotypes. The drought tolerance of SVEMS16, SVEVO, and BULEL was related to their capacity of maintaining or increasing nutrient's accumulation, while the limited nutrient acquisition capability of CRESO and S.CAP likely resulted in their susceptibility to drought. The study highlighted the importance of macronutrients such as SO<sub>4</sub><sup>2−</sup>, NO<sub>3</sub><sup>−</sup>, PO<sub>4</sub><sup>3−</sup>, and K<sup>+</sup> in stress resilience and identified variant-containing genes potentially influencing nutritional variations under drought. These findings provide valuable insights for further field studies to assess the drought tolerance of durum wheat genotypes across various growth stages, ultimately ensuring food security and sustainable production in the face of changing environmental conditions.</p></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0981942824007459/pdfft?md5=49cc74cd64cd4e194723059eb7d68dc2&pid=1-s2.0-S0981942824007459-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824007459\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824007459","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

干旱是硬质小麦种植面临的主要挑战,而硬质小麦是全球粮食安全的重要作物。植物通过调整矿质营养成分来应对干旱,以应对缺水问题,这表明营养成分的可塑性对植物适应和适应不同环境的重要性。因此,了解干旱胁迫下硬质小麦矿质养分谱可塑性的遗传基础对选育耐旱品种至关重要。本研究调查了不同硬粒小麦基因型在幼苗期对严重干旱胁迫的反应。研究采用了离子组学、分子、生物化学和生理学方法来揭示不同基因型的不同行为。SVEMS16、SVEVO和BULEL的耐旱性与其维持或增加养分积累的能力有关,而CRESO和S.CAP有限的养分获取能力可能导致其对干旱的易感性。该研究强调了SO42-、NO3-、PO43-和K+等大量营养素在抗逆性中的重要性,并发现了可能影响干旱下营养变化的变异基因。这些发现为进一步开展实地研究,评估硬质小麦基因型在不同生长阶段的抗旱性提供了宝贵的见解,最终确保在不断变化的环境条件下的粮食安全和可持续生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The drought-induced plasticity of mineral nutrients contributes to drought tolerance discrimination in durum wheat

Drought is a major challenge for the cultivation of durum wheat, a crucial crop for global food security. Plants respond to drought by adjusting their mineral nutrient profiles to cope with water scarcity, showing the importance of nutrient plasticity for plant acclimation and adaptation to diverse environments. Therefore, it is essential to understand the genetic basis of mineral nutrient profile plasticity in durum wheat under drought stress to select drought-tolerant varieties. The research study investigated the responses of different durum wheat genotypes to severe drought stress at the seedling stage. The study employed an ionomic, molecular, biochemical and physiological approach to shed light on distinct behaviors among different genotypes. The drought tolerance of SVEMS16, SVEVO, and BULEL was related to their capacity of maintaining or increasing nutrient's accumulation, while the limited nutrient acquisition capability of CRESO and S.CAP likely resulted in their susceptibility to drought. The study highlighted the importance of macronutrients such as SO42−, NO3, PO43−, and K+ in stress resilience and identified variant-containing genes potentially influencing nutritional variations under drought. These findings provide valuable insights for further field studies to assess the drought tolerance of durum wheat genotypes across various growth stages, ultimately ensuring food security and sustainable production in the face of changing environmental conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Riboflavin improves postharvest cold tolerance in zucchini fruit inducing non-enzymatic antioxidant response and phenolic metabolism Infection of tomato plants by tomato yellow leaf curl virus (TYLCV) potentiates the ethylene and salicylic acid pathways to fend off root-knot nematode (Meloidogyne incognita) parasitism Effects of water deficit on two cultivars of Hibiscus mutabilis: A comprehensive study on morphological, physiological, and metabolic responses Effect of green and UVA spectra, and pre-harvest treatments on biomass and metabolite yields of indoor cultivated stevia rebaudiana Combining transcriptome and metabolome analyses to reveal the response of maize roots to Pb stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1