用于多晶体建模的各向异性功率图:通过优化传输高效生成弯曲晶粒

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-30 DOI:10.1016/j.commatsci.2024.113317
{"title":"用于多晶体建模的各向异性功率图:通过优化传输高效生成弯曲晶粒","authors":"","doi":"10.1016/j.commatsci.2024.113317","DOIUrl":null,"url":null,"abstract":"<div><p>The microstructure of metals and foams can be effectively modelled with anisotropic power diagrams (APDs), which provide control over the shape of individual grains. One major obstacle to the wider adoption of APDs is the computational cost that is associated with their generation. We propose a novel approach to generate APDs with prescribed statistical properties, including fine control over the size of individual grains. To this end, we rely on fast optimal transport algorithms that stream well on Graphics Processing Units (GPU) and handle non-uniform, anisotropic distance functions. This allows us to find large APDs that best fit experimental data and generate synthetic high-resolution microstructures in (tens of) seconds. This unlocks their use for computational homogenisation, which is especially relevant to machine learning methods that require the generation of large collections of representative microstructures as training data. The paper is accompanied by a Python library, <span>PyAPD</span>, which is freely available at: <span><span>www.github.com/mbuze/PyAPD</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092702562400538X/pdfft?md5=cfe7f7f163e6c906bfbc921a5cca5e54&pid=1-s2.0-S092702562400538X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Anisotropic power diagrams for polycrystal modelling: Efficient generation of curved grains via optimal transport\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The microstructure of metals and foams can be effectively modelled with anisotropic power diagrams (APDs), which provide control over the shape of individual grains. One major obstacle to the wider adoption of APDs is the computational cost that is associated with their generation. We propose a novel approach to generate APDs with prescribed statistical properties, including fine control over the size of individual grains. To this end, we rely on fast optimal transport algorithms that stream well on Graphics Processing Units (GPU) and handle non-uniform, anisotropic distance functions. This allows us to find large APDs that best fit experimental data and generate synthetic high-resolution microstructures in (tens of) seconds. This unlocks their use for computational homogenisation, which is especially relevant to machine learning methods that require the generation of large collections of representative microstructures as training data. The paper is accompanied by a Python library, <span>PyAPD</span>, which is freely available at: <span><span>www.github.com/mbuze/PyAPD</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S092702562400538X/pdfft?md5=cfe7f7f163e6c906bfbc921a5cca5e54&pid=1-s2.0-S092702562400538X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702562400538X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562400538X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用各向异性功率图(APD)可以有效地模拟金属和泡沫的微观结构,从而控制单个晶粒的形状。广泛采用 APD 的一个主要障碍是生成 APD 的计算成本。我们提出了一种新方法来生成具有规定统计特性的 APD,包括对单个晶粒大小的精细控制。为此,我们采用了快速优化传输算法,该算法能在图形处理器(GPU)上流畅运行,并能处理非均匀、各向异性的距离函数。这使我们能够找到最适合实验数据的大型 APD,并在(数十)秒内生成合成的高分辨率微结构。这使得它们可以用于计算均质化,这与需要生成大量代表性微结构作为训练数据的机器学习方法尤为相关。该论文附有一个 Python 库 PyAPD,可在 www.github.com/mbuze/PyAPD 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anisotropic power diagrams for polycrystal modelling: Efficient generation of curved grains via optimal transport

The microstructure of metals and foams can be effectively modelled with anisotropic power diagrams (APDs), which provide control over the shape of individual grains. One major obstacle to the wider adoption of APDs is the computational cost that is associated with their generation. We propose a novel approach to generate APDs with prescribed statistical properties, including fine control over the size of individual grains. To this end, we rely on fast optimal transport algorithms that stream well on Graphics Processing Units (GPU) and handle non-uniform, anisotropic distance functions. This allows us to find large APDs that best fit experimental data and generate synthetic high-resolution microstructures in (tens of) seconds. This unlocks their use for computational homogenisation, which is especially relevant to machine learning methods that require the generation of large collections of representative microstructures as training data. The paper is accompanied by a Python library, PyAPD, which is freely available at: www.github.com/mbuze/PyAPD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1