如何批判性地评估和引导人工智能在肿瘤学中的发展和应用轨迹

R.S.N. Fehrmann, M. van Kruchten, E.G.E. de Vries
{"title":"如何批判性地评估和引导人工智能在肿瘤学中的发展和应用轨迹","authors":"R.S.N. Fehrmann,&nbsp;M. van Kruchten,&nbsp;E.G.E. de Vries","doi":"10.1016/j.esmorw.2024.100066","DOIUrl":null,"url":null,"abstract":"<div><p>As artificial intelligence (AI) advances, oncologists stand at the forefront of a transformative era in healthcare. AI, which empowers machines to learn from data, make decisions, and carry out tasks typically requiring human intelligence, is revolutionizing our clinical landscape. It promises streamlined workflows, enhanced diagnostic accuracy, and personalized treatments tailored to each patient’s unique profile. In the vast sea of patient data, AI serves as a guiding compass, ensuring no detail is overlooked, amplifying clinical acumen, and refining treatment decisions. However, to ensure AI’s benefits reach patients effectively, it is imperative that oncologists actively guide its development and application. This overview aims to equip oncologists with the tools to critically appraise and influence the trajectory of AI in oncology, ensuring its integration leads to meaningful advances in patient care.</p></div>","PeriodicalId":100491,"journal":{"name":"ESMO Real World Data and Digital Oncology","volume":"5 ","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949820124000444/pdfft?md5=10c20b695220a08fe788fa0a3070664b&pid=1-s2.0-S2949820124000444-main.pdf","citationCount":"0","resultStr":"{\"title\":\"How to critically appraise and direct the trajectory of AI development and application in oncology\",\"authors\":\"R.S.N. Fehrmann,&nbsp;M. van Kruchten,&nbsp;E.G.E. de Vries\",\"doi\":\"10.1016/j.esmorw.2024.100066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As artificial intelligence (AI) advances, oncologists stand at the forefront of a transformative era in healthcare. AI, which empowers machines to learn from data, make decisions, and carry out tasks typically requiring human intelligence, is revolutionizing our clinical landscape. It promises streamlined workflows, enhanced diagnostic accuracy, and personalized treatments tailored to each patient’s unique profile. In the vast sea of patient data, AI serves as a guiding compass, ensuring no detail is overlooked, amplifying clinical acumen, and refining treatment decisions. However, to ensure AI’s benefits reach patients effectively, it is imperative that oncologists actively guide its development and application. This overview aims to equip oncologists with the tools to critically appraise and influence the trajectory of AI in oncology, ensuring its integration leads to meaningful advances in patient care.</p></div>\",\"PeriodicalId\":100491,\"journal\":{\"name\":\"ESMO Real World Data and Digital Oncology\",\"volume\":\"5 \",\"pages\":\"Article 100066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949820124000444/pdfft?md5=10c20b695220a08fe788fa0a3070664b&pid=1-s2.0-S2949820124000444-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESMO Real World Data and Digital Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949820124000444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESMO Real World Data and Digital Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949820124000444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能(AI)的发展,肿瘤学家站在了医疗保健变革时代的前沿。人工智能赋予机器从数据中学习、做出决策和执行通常需要人类智能的任务的能力,它正在彻底改变我们的临床状况。它有望简化工作流程,提高诊断准确性,并根据每位患者的独特情况提供个性化治疗。在浩如烟海的患者数据中,人工智能就像一个指南针,确保不忽略任何细节,增强临床敏锐度,完善治疗决策。然而,要确保人工智能的益处有效惠及患者,肿瘤学家必须积极引导其发展和应用。本综述旨在为肿瘤学家提供批判性评估的工具,并影响人工智能在肿瘤学中的发展轨迹,确保人工智能的整合能为患者护理带来有意义的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to critically appraise and direct the trajectory of AI development and application in oncology

As artificial intelligence (AI) advances, oncologists stand at the forefront of a transformative era in healthcare. AI, which empowers machines to learn from data, make decisions, and carry out tasks typically requiring human intelligence, is revolutionizing our clinical landscape. It promises streamlined workflows, enhanced diagnostic accuracy, and personalized treatments tailored to each patient’s unique profile. In the vast sea of patient data, AI serves as a guiding compass, ensuring no detail is overlooked, amplifying clinical acumen, and refining treatment decisions. However, to ensure AI’s benefits reach patients effectively, it is imperative that oncologists actively guide its development and application. This overview aims to equip oncologists with the tools to critically appraise and influence the trajectory of AI in oncology, ensuring its integration leads to meaningful advances in patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utility of automated data transfer for cancer clinical trials and considerations for implementation Characterisation of oncology EHR-derived real-world data in the UK, Germany, and Japan Evolving treatment patterns and outcomes among patients with metastatic urothelial carcinoma post-avelumab maintenance approval: insights from The US Oncology Network Collaborating across sectors in service of open science, precision oncology, and patients: an overview of the AACR Project GENIE (Genomics Evidence Neoplasia Information Exchange) Biopharma Collaborative (BPC) Data analytics for real-world data integration in TKI-treated NSCLC patients using electronic health records
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1