{"title":"使用 Fe/Dol 催化剂对松木和聚丙烯基废弃掩模进行富氢共气化的机理分析","authors":"","doi":"10.1016/j.joei.2024.101801","DOIUrl":null,"url":null,"abstract":"<div><p>Disposable masks, predominantly made of polypropylene melt-blown fabric, present a significant environmental challenge due to their large volume and resistance to natural degradation. This study explores the co-gasification of forestry waste, specifically pine wood, and waste masks to enhance biomass gasification efficiency while enabling the high-value utilization of waste materials. The Fe/Dol catalyst, prepared by loading transition metal Fe onto calcined dolomite using the impregnation method, was tested in a two-stage fixed-bed gasification system. Steam was employed as the gasifying agent. The study systematically examines the effects of steam flow rate, gasification reforming temperature, the mixing ratio of pine wood to masks, and Fe loading on the catalyst's performance in gas-phase and liquid-phase product formation.Characterization analyses revealed that Fe oxides facilitate the cleavage of aromatic rings in aromatic compounds, leading to the formation of two-carbon chain segments and promoting the production of ethylene and propylene from aliphatic hydrocarbons. Additionally, the catalyst enhanced tar cracking, generating free radicals and ring bonds. Experimental results indicate that at a steam flow rate of 3 mg/min, a gasification temperature of 850 °C, a pine wood to mask mixing ratio of 1:2, and an Fe loading of 8 %, the hydrogen (H<sub>2</sub>) volume fraction reached 52.48 %, with a gas yield of 1.67 m³/kg and a hydrogen production rate of 78.25 g/kg.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic analysis of hydrogen-rich Co-gasification of pine wood and polypropylene-based waste masks using Fe/Dol catalyst\",\"authors\":\"\",\"doi\":\"10.1016/j.joei.2024.101801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Disposable masks, predominantly made of polypropylene melt-blown fabric, present a significant environmental challenge due to their large volume and resistance to natural degradation. This study explores the co-gasification of forestry waste, specifically pine wood, and waste masks to enhance biomass gasification efficiency while enabling the high-value utilization of waste materials. The Fe/Dol catalyst, prepared by loading transition metal Fe onto calcined dolomite using the impregnation method, was tested in a two-stage fixed-bed gasification system. Steam was employed as the gasifying agent. The study systematically examines the effects of steam flow rate, gasification reforming temperature, the mixing ratio of pine wood to masks, and Fe loading on the catalyst's performance in gas-phase and liquid-phase product formation.Characterization analyses revealed that Fe oxides facilitate the cleavage of aromatic rings in aromatic compounds, leading to the formation of two-carbon chain segments and promoting the production of ethylene and propylene from aliphatic hydrocarbons. Additionally, the catalyst enhanced tar cracking, generating free radicals and ring bonds. Experimental results indicate that at a steam flow rate of 3 mg/min, a gasification temperature of 850 °C, a pine wood to mask mixing ratio of 1:2, and an Fe loading of 8 %, the hydrogen (H<sub>2</sub>) volume fraction reached 52.48 %, with a gas yield of 1.67 m³/kg and a hydrogen production rate of 78.25 g/kg.</p></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124002794\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002794","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Mechanistic analysis of hydrogen-rich Co-gasification of pine wood and polypropylene-based waste masks using Fe/Dol catalyst
Disposable masks, predominantly made of polypropylene melt-blown fabric, present a significant environmental challenge due to their large volume and resistance to natural degradation. This study explores the co-gasification of forestry waste, specifically pine wood, and waste masks to enhance biomass gasification efficiency while enabling the high-value utilization of waste materials. The Fe/Dol catalyst, prepared by loading transition metal Fe onto calcined dolomite using the impregnation method, was tested in a two-stage fixed-bed gasification system. Steam was employed as the gasifying agent. The study systematically examines the effects of steam flow rate, gasification reforming temperature, the mixing ratio of pine wood to masks, and Fe loading on the catalyst's performance in gas-phase and liquid-phase product formation.Characterization analyses revealed that Fe oxides facilitate the cleavage of aromatic rings in aromatic compounds, leading to the formation of two-carbon chain segments and promoting the production of ethylene and propylene from aliphatic hydrocarbons. Additionally, the catalyst enhanced tar cracking, generating free radicals and ring bonds. Experimental results indicate that at a steam flow rate of 3 mg/min, a gasification temperature of 850 °C, a pine wood to mask mixing ratio of 1:2, and an Fe loading of 8 %, the hydrogen (H2) volume fraction reached 52.48 %, with a gas yield of 1.67 m³/kg and a hydrogen production rate of 78.25 g/kg.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.