{"title":"通过间隔层工程改善基于电荷等离子体的无结 FinFET 的数字、模拟/射频和线性性能","authors":"Kallolini Banerjee , Abhijit Biswas","doi":"10.1016/j.micrna.2024.207961","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the digital, analog/RF, and linearity performance of four CP FinFETs distinguished by spacer layers: (i) single low-k spacer on both sides of the gate (D<sub>1</sub>), (ii) single high-k spacer on both sides of the gate (D<sub>2</sub>), (iii) a combination of high-k spacer and air on the source side and high-k spacer on the drain side (D<sub>3</sub>), and (iv) a combination of high-k spacer and air symmetrically placed on both sides of the gate (D<sub>4</sub>) at 10 nm technology node. Our results highlight the superior digital performance of the D<sub>4</sub> device, demonstrating significant enhancements in various analog/RF figures of merit (FOMs) including transconductance, transconductance efficiency, unity gain cut-off frequency (F<sub>T</sub>), and gain bandwidth product (GBP). Notably, the D<sub>4</sub> device exhibits a remarkable 256 % improvement in F<sub>T</sub> and a substantial 456.13 % enhancement in GBP compared to D<sub>1</sub>. Additionally, we analyze linearity and intermodulation distortion performance, suggesting the D<sub>4</sub> device as the optimal architecture for high-performance digital and analog/RF applications.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"195 ","pages":"Article 207961"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of digital, analog/RF and linearity performances of charge plasma based junctionless FinFET through spacer layer engineering\",\"authors\":\"Kallolini Banerjee , Abhijit Biswas\",\"doi\":\"10.1016/j.micrna.2024.207961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the digital, analog/RF, and linearity performance of four CP FinFETs distinguished by spacer layers: (i) single low-k spacer on both sides of the gate (D<sub>1</sub>), (ii) single high-k spacer on both sides of the gate (D<sub>2</sub>), (iii) a combination of high-k spacer and air on the source side and high-k spacer on the drain side (D<sub>3</sub>), and (iv) a combination of high-k spacer and air symmetrically placed on both sides of the gate (D<sub>4</sub>) at 10 nm technology node. Our results highlight the superior digital performance of the D<sub>4</sub> device, demonstrating significant enhancements in various analog/RF figures of merit (FOMs) including transconductance, transconductance efficiency, unity gain cut-off frequency (F<sub>T</sub>), and gain bandwidth product (GBP). Notably, the D<sub>4</sub> device exhibits a remarkable 256 % improvement in F<sub>T</sub> and a substantial 456.13 % enhancement in GBP compared to D<sub>1</sub>. Additionally, we analyze linearity and intermodulation distortion performance, suggesting the D<sub>4</sub> device as the optimal architecture for high-performance digital and analog/RF applications.</p></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"195 \",\"pages\":\"Article 207961\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324002103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
我们对四种 CP FinFET 的数字、模拟/射频和线性度性能进行了研究,这四种 CP FinFET 采用了不同的间隔层:(i) 栅极两侧的单个低 k 间隔层 (D1);(ii) 栅极两侧的单个高 k 间隔层 (D2);(iii) 源极侧高 k 间隔层和空气的组合以及漏极侧高 k 间隔层 (D3);(iv) 栅极两侧对称放置的高 k 间隔层和空气的组合 (D4)。我们的研究结果凸显了 D4 器件卓越的数字性能,在各种模拟/射频性能指标 (FOM) 方面都有显著提高,包括跨导、跨导效率、统一增益截止频率 (FT) 和增益带宽乘积 (GBP)。值得注意的是,与 D1 器件相比,D4 器件的 FT 和 GBP 分别显著提高了 256% 和 456.13%。此外,我们还分析了线性和互调失真性能,认为 D4 器件是高性能数字和模拟/射频应用的最佳架构。
Improvement of digital, analog/RF and linearity performances of charge plasma based junctionless FinFET through spacer layer engineering
We investigate the digital, analog/RF, and linearity performance of four CP FinFETs distinguished by spacer layers: (i) single low-k spacer on both sides of the gate (D1), (ii) single high-k spacer on both sides of the gate (D2), (iii) a combination of high-k spacer and air on the source side and high-k spacer on the drain side (D3), and (iv) a combination of high-k spacer and air symmetrically placed on both sides of the gate (D4) at 10 nm technology node. Our results highlight the superior digital performance of the D4 device, demonstrating significant enhancements in various analog/RF figures of merit (FOMs) including transconductance, transconductance efficiency, unity gain cut-off frequency (FT), and gain bandwidth product (GBP). Notably, the D4 device exhibits a remarkable 256 % improvement in FT and a substantial 456.13 % enhancement in GBP compared to D1. Additionally, we analyze linearity and intermodulation distortion performance, suggesting the D4 device as the optimal architecture for high-performance digital and analog/RF applications.