含有哌嗪和喹喔啉片段的黄酮醇衍生物:合成和抗真菌活性。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2024-09-03 DOI:10.1007/s11030-024-10977-8
Yi Liu, Hui Xin, Yuhong Wang, Qing Zhou, Jiao Tian, Chunmei Hu, Xingping Luo, Haotao Pu, Wei Xue
{"title":"含有哌嗪和喹喔啉片段的黄酮醇衍生物:合成和抗真菌活性。","authors":"Yi Liu, Hui Xin, Yuhong Wang, Qing Zhou, Jiao Tian, Chunmei Hu, Xingping Luo, Haotao Pu, Wei Xue","doi":"10.1007/s11030-024-10977-8","DOIUrl":null,"url":null,"abstract":"<p><p>A series of flavonol derivatives containing piperazine and quinoxaline had been designed and synthesized. The biological activity test results showed that some of the target compounds had good antifungal activity against various fungi. N5 had the best antifungal activity against Phomopsis sp (P.s.) and Phytophthora capsica (P.c.). The half maximal effective concentration (EC<sub>50</sub>) was 12.9 and 25.8 μg/mL against P.s. and P.c., respectively, which were better than azoxystrobin (Az, 25.4 and 71.1 μg/mL). In addition, the protective and curative activities of N5 against kiwifruit were 85.9 and 67.0% at 200 μg/mL in vivo, which were better than that of Az (65.9 and 57.0%). The protective and curative activities against chili leaves were 80.6 and 66.5% at 200 μg/mL, which were better than that of Az (77.6 and 60.0%). The scanning electron microscopy (SEM) experiment showed that the action of N5 caused the mycelium to bend and fold, changed its morphology and caused damaged to the mycelium. Through the measurement of relative conductivity, leakage of cytoplasmic contents and determination of malondialdehyde (MDA) content indicated that N5 could damage the integrity of pathogenic fungal cell membranes, change the permeability of cell membranes, and affect the normal growth of mycelium.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flavonol derivatives containing piperazine and quinoxaline fragments: synthesis and antifungal activity.\",\"authors\":\"Yi Liu, Hui Xin, Yuhong Wang, Qing Zhou, Jiao Tian, Chunmei Hu, Xingping Luo, Haotao Pu, Wei Xue\",\"doi\":\"10.1007/s11030-024-10977-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of flavonol derivatives containing piperazine and quinoxaline had been designed and synthesized. The biological activity test results showed that some of the target compounds had good antifungal activity against various fungi. N5 had the best antifungal activity against Phomopsis sp (P.s.) and Phytophthora capsica (P.c.). The half maximal effective concentration (EC<sub>50</sub>) was 12.9 and 25.8 μg/mL against P.s. and P.c., respectively, which were better than azoxystrobin (Az, 25.4 and 71.1 μg/mL). In addition, the protective and curative activities of N5 against kiwifruit were 85.9 and 67.0% at 200 μg/mL in vivo, which were better than that of Az (65.9 and 57.0%). The protective and curative activities against chili leaves were 80.6 and 66.5% at 200 μg/mL, which were better than that of Az (77.6 and 60.0%). The scanning electron microscopy (SEM) experiment showed that the action of N5 caused the mycelium to bend and fold, changed its morphology and caused damaged to the mycelium. Through the measurement of relative conductivity, leakage of cytoplasmic contents and determination of malondialdehyde (MDA) content indicated that N5 could damage the integrity of pathogenic fungal cell membranes, change the permeability of cell membranes, and affect the normal growth of mycelium.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-10977-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10977-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设计并合成了一系列含有哌嗪和喹喔啉的黄酮醇衍生物。生物活性测试结果表明,一些目标化合物对多种真菌具有良好的抗真菌活性。N5 对拟南芥(Phomopsis sp,P.s.)和疫霉(Phytophthora capsica,P.c.)的抗真菌活性最好。N5 对 P.s. 和 P.c. 的半数最大有效浓度(EC50)分别为 12.9 和 25.8 μg/mL,优于唑菌酯(Az,25.4 和 71.1 μg/mL)。此外,在 200 μg/mL 的浓度下,N5 对猕猴桃的体内保护和治疗活性分别为 85.9% 和 67.0%,优于 Az(65.9% 和 57.0%)。对辣椒叶的保护和治疗活性在 200 μg/mL 时分别为 80.6% 和 66.5%,优于 Az(77.6% 和 60.0%)。扫描电子显微镜(SEM)实验表明,N5 的作用使菌丝弯曲、折叠,改变了菌丝的形态,对菌丝造成了破坏。通过测定相对电导率、细胞质内容物的泄漏和丙二醛(MDA)含量表明,N5 能破坏病原真菌细胞膜的完整性,改变细胞膜的通透性,影响菌丝的正常生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flavonol derivatives containing piperazine and quinoxaline fragments: synthesis and antifungal activity.

A series of flavonol derivatives containing piperazine and quinoxaline had been designed and synthesized. The biological activity test results showed that some of the target compounds had good antifungal activity against various fungi. N5 had the best antifungal activity against Phomopsis sp (P.s.) and Phytophthora capsica (P.c.). The half maximal effective concentration (EC50) was 12.9 and 25.8 μg/mL against P.s. and P.c., respectively, which were better than azoxystrobin (Az, 25.4 and 71.1 μg/mL). In addition, the protective and curative activities of N5 against kiwifruit were 85.9 and 67.0% at 200 μg/mL in vivo, which were better than that of Az (65.9 and 57.0%). The protective and curative activities against chili leaves were 80.6 and 66.5% at 200 μg/mL, which were better than that of Az (77.6 and 60.0%). The scanning electron microscopy (SEM) experiment showed that the action of N5 caused the mycelium to bend and fold, changed its morphology and caused damaged to the mycelium. Through the measurement of relative conductivity, leakage of cytoplasmic contents and determination of malondialdehyde (MDA) content indicated that N5 could damage the integrity of pathogenic fungal cell membranes, change the permeability of cell membranes, and affect the normal growth of mycelium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Pyroptosis and chemical classification of pyroptotic agents. Discovery and optimization of 4-(imidazo[1,2-a]pyrimidin-3-yl)thiazol-2-amine derivatives as novel phosphodiesterase 4 inhibitors. Synthesis, spectroscopic characterization, DFT calculations, in silico-ADMET and molecular docking analysis of novel quinoline-substituted 5H-chromeno [2,3-b] pyridine derivatives as antibacterial agents. Investigation of small molecules disrupting dengue virus assembly by inhibiting capsid protein and blocking RNA encapsulation. Microwave-assisted protocol towards synthesis of heterocyclic molecules: a comparative analysis with conventional synthetic methodologies (years 2019-2023): a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1