Kiichi Yokoyama, Yuichi Hiraoka, Yoshifumi Abe, Kenji F Tanaka
{"title":"成年小鼠大脑中髓鞘形成少突胶质细胞的可视化。","authors":"Kiichi Yokoyama, Yuichi Hiraoka, Yoshifumi Abe, Kenji F Tanaka","doi":"10.1111/jnc.16218","DOIUrl":null,"url":null,"abstract":"<p><p>Oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs) is considered to result in two populations: premyelinating and myelinating OLs. Recent single-cell RNA sequence data subdivided these populations into newly formed (NFOLs), myelin-forming (MFOLs), and mature (MOLs) oligodendrocytes. However, which newly proposed population corresponds to premyelinating or myelinating OLs is unknown. We focused on the NFOL-specific long non-coding oligodendrocyte 1 gene (LncOL1) and sought to label NFOLs under the control of the LncOL1 promoter using a tetracycline-controllable gene induction system. We demonstrated that LncOL1 was expressed by premyelinating OLs and that the MFOL-specific gene, Ctps, was not, indicating that NFOLs correspond to premyelinating OLs and that MFOLs and MOLs correspond to myelinating OLs. We then generated a LncOL1-tTA mouse in which a tetracycline transactivator (tTA) cassette was inserted downstream from the LncOL1 transcription initiation site. By crossing the LncOL1-tTA mice with tetO reporter mice, we generated LncOL1-tTA::tetO-yellow fluorescent protein (YFP) double-transgenic (LncOL1-YFP) mice. Although LncOL1 is non-coding, YFP was detected in LncOL1-YFP mice, indicating successful tTA translation. Unexpectedly, we found that the morphology of LncOL1-tTA-driven YFP<sup>+</sup> cells was distinct from that of LncOL1<sup>+</sup> premyelinating OLs and that the labeled cells instead appeared as myelinating OLs. We demonstrated from their RNA expression that YFP-labeled OLs were MFOLs, but not MOLs. Using the unique property of delayed YFP induction, we sought to determine whether MFOLs are constantly supplied from OPCs and differentiate into MOLs, or whether MFOLs pause their differentiation and sustain this stage in the adult brain. To achieve this objective, we irradiated adult LncOL1-YFP brains with X-rays to deplete dividing OPCs and their progeny. The irradiation extinguished YFP-labeled OLs, indicating that adult OPCs differentiated into MOLs during a single period. We established a new transgenic mouse line that genetically labels MFOLs, providing a reliable tool for investigating the dynamics of adult oligodendrogenesis.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of myelin-forming oligodendrocytes in the adult mouse brain.\",\"authors\":\"Kiichi Yokoyama, Yuichi Hiraoka, Yoshifumi Abe, Kenji F Tanaka\",\"doi\":\"10.1111/jnc.16218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs) is considered to result in two populations: premyelinating and myelinating OLs. Recent single-cell RNA sequence data subdivided these populations into newly formed (NFOLs), myelin-forming (MFOLs), and mature (MOLs) oligodendrocytes. However, which newly proposed population corresponds to premyelinating or myelinating OLs is unknown. We focused on the NFOL-specific long non-coding oligodendrocyte 1 gene (LncOL1) and sought to label NFOLs under the control of the LncOL1 promoter using a tetracycline-controllable gene induction system. We demonstrated that LncOL1 was expressed by premyelinating OLs and that the MFOL-specific gene, Ctps, was not, indicating that NFOLs correspond to premyelinating OLs and that MFOLs and MOLs correspond to myelinating OLs. We then generated a LncOL1-tTA mouse in which a tetracycline transactivator (tTA) cassette was inserted downstream from the LncOL1 transcription initiation site. By crossing the LncOL1-tTA mice with tetO reporter mice, we generated LncOL1-tTA::tetO-yellow fluorescent protein (YFP) double-transgenic (LncOL1-YFP) mice. Although LncOL1 is non-coding, YFP was detected in LncOL1-YFP mice, indicating successful tTA translation. Unexpectedly, we found that the morphology of LncOL1-tTA-driven YFP<sup>+</sup> cells was distinct from that of LncOL1<sup>+</sup> premyelinating OLs and that the labeled cells instead appeared as myelinating OLs. We demonstrated from their RNA expression that YFP-labeled OLs were MFOLs, but not MOLs. Using the unique property of delayed YFP induction, we sought to determine whether MFOLs are constantly supplied from OPCs and differentiate into MOLs, or whether MFOLs pause their differentiation and sustain this stage in the adult brain. To achieve this objective, we irradiated adult LncOL1-YFP brains with X-rays to deplete dividing OPCs and their progeny. The irradiation extinguished YFP-labeled OLs, indicating that adult OPCs differentiated into MOLs during a single period. We established a new transgenic mouse line that genetically labels MFOLs, providing a reliable tool for investigating the dynamics of adult oligodendrogenesis.</p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jnc.16218\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnc.16218","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Visualization of myelin-forming oligodendrocytes in the adult mouse brain.
Oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs) is considered to result in two populations: premyelinating and myelinating OLs. Recent single-cell RNA sequence data subdivided these populations into newly formed (NFOLs), myelin-forming (MFOLs), and mature (MOLs) oligodendrocytes. However, which newly proposed population corresponds to premyelinating or myelinating OLs is unknown. We focused on the NFOL-specific long non-coding oligodendrocyte 1 gene (LncOL1) and sought to label NFOLs under the control of the LncOL1 promoter using a tetracycline-controllable gene induction system. We demonstrated that LncOL1 was expressed by premyelinating OLs and that the MFOL-specific gene, Ctps, was not, indicating that NFOLs correspond to premyelinating OLs and that MFOLs and MOLs correspond to myelinating OLs. We then generated a LncOL1-tTA mouse in which a tetracycline transactivator (tTA) cassette was inserted downstream from the LncOL1 transcription initiation site. By crossing the LncOL1-tTA mice with tetO reporter mice, we generated LncOL1-tTA::tetO-yellow fluorescent protein (YFP) double-transgenic (LncOL1-YFP) mice. Although LncOL1 is non-coding, YFP was detected in LncOL1-YFP mice, indicating successful tTA translation. Unexpectedly, we found that the morphology of LncOL1-tTA-driven YFP+ cells was distinct from that of LncOL1+ premyelinating OLs and that the labeled cells instead appeared as myelinating OLs. We demonstrated from their RNA expression that YFP-labeled OLs were MFOLs, but not MOLs. Using the unique property of delayed YFP induction, we sought to determine whether MFOLs are constantly supplied from OPCs and differentiate into MOLs, or whether MFOLs pause their differentiation and sustain this stage in the adult brain. To achieve this objective, we irradiated adult LncOL1-YFP brains with X-rays to deplete dividing OPCs and their progeny. The irradiation extinguished YFP-labeled OLs, indicating that adult OPCs differentiated into MOLs during a single period. We established a new transgenic mouse line that genetically labels MFOLs, providing a reliable tool for investigating the dynamics of adult oligodendrogenesis.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.