利用欧拉-拉格朗日方法分析气溶胶颗粒的沉积和波浪形管道内湍流的特征

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2024-08-31 DOI:10.1016/j.cep.2024.109971
Farzana Akter, Sumon Saha
{"title":"利用欧拉-拉格朗日方法分析气溶胶颗粒的沉积和波浪形管道内湍流的特征","authors":"Farzana Akter,&nbsp;Sumon Saha","doi":"10.1016/j.cep.2024.109971","DOIUrl":null,"url":null,"abstract":"<div><p>This paper demonstrates a numerical simulation study to understand particle deposition phenomena in wavy pipe configurations comprehensively. The research investigates the intricate dynamics of particle deposition within wavy pipes by utilizing the RNG <em>k</em>-<em>ε</em> turbulence model with enhanced wall treatment for fluid flow simulation and employing a Lagrangian particle tracking model. The finite volume approach is adopted to solve the mathematical model of the current problem. The rate of aerosol particle deposition within a wavy pipe under turbulent flow conditions is systematically explored by varying the size of particles (1 ≤ <em>d<sub>p</sub></em> (μm) ≤ 30), Reynolds numbers (5000 ≤ <em>Re</em> ≤ 10,000), and other parameters like wave frequency (3 ≤ <em>f</em> ≤ 7), wave amplitude (5 ≤ <em>a</em> (mm) ≤ 15), and diameter of the pipe (10 ≤ <em>D</em> (mm) ≤ 30). The findings reveal significant correlations between these parameters and deposition efficiency, shedding light on the complex interplay between geometric factors and flow characteristics within the wavy pipe configurations. Notably, larger pipe diameters and higher wave amplitudes are found to enhance deposition rates, while the optimal wave frequencies exist at intermediate values. Additionally, alterations in flow velocity exhibit an inverse relationship with deposition efficiency.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"205 ","pages":"Article 109971"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deposition of aerosol particles and characteristics of turbulent flow inside wavy pipe using Eulerian-Lagrangian approach\",\"authors\":\"Farzana Akter,&nbsp;Sumon Saha\",\"doi\":\"10.1016/j.cep.2024.109971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper demonstrates a numerical simulation study to understand particle deposition phenomena in wavy pipe configurations comprehensively. The research investigates the intricate dynamics of particle deposition within wavy pipes by utilizing the RNG <em>k</em>-<em>ε</em> turbulence model with enhanced wall treatment for fluid flow simulation and employing a Lagrangian particle tracking model. The finite volume approach is adopted to solve the mathematical model of the current problem. The rate of aerosol particle deposition within a wavy pipe under turbulent flow conditions is systematically explored by varying the size of particles (1 ≤ <em>d<sub>p</sub></em> (μm) ≤ 30), Reynolds numbers (5000 ≤ <em>Re</em> ≤ 10,000), and other parameters like wave frequency (3 ≤ <em>f</em> ≤ 7), wave amplitude (5 ≤ <em>a</em> (mm) ≤ 15), and diameter of the pipe (10 ≤ <em>D</em> (mm) ≤ 30). The findings reveal significant correlations between these parameters and deposition efficiency, shedding light on the complex interplay between geometric factors and flow characteristics within the wavy pipe configurations. Notably, larger pipe diameters and higher wave amplitudes are found to enhance deposition rates, while the optimal wave frequencies exist at intermediate values. Additionally, alterations in flow velocity exhibit an inverse relationship with deposition efficiency.</p></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":\"205 \",\"pages\":\"Article 109971\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S025527012400309X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025527012400309X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了一项数值模拟研究,旨在全面了解波浪形管道构型中的颗粒沉积现象。研究利用增强壁面处理的 RNG k-ε 湍流模型进行流体流动模拟,并采用拉格朗日粒子跟踪模型,研究了波浪形管道内粒子沉积的复杂动力学过程。采用有限体积法求解当前问题的数学模型。通过改变颗粒尺寸(1≤dp(μm)≤30)、雷诺数(5000≤Re≤10000)以及波频(3≤f≤7)、波幅(5≤a(mm)≤15)和管道直径(10≤D(mm)≤30)等参数,系统地探讨了湍流条件下气溶胶颗粒在波浪形管道内的沉积速率。研究结果揭示了这些参数与沉积效率之间的重要关联,揭示了波浪形管道配置中几何因素与流动特性之间复杂的相互作用。值得注意的是,较大的管道直径和较高的波幅可提高沉积率,而最佳波频存在于中间值。此外,流速的变化与沉积效率呈反比关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deposition of aerosol particles and characteristics of turbulent flow inside wavy pipe using Eulerian-Lagrangian approach

This paper demonstrates a numerical simulation study to understand particle deposition phenomena in wavy pipe configurations comprehensively. The research investigates the intricate dynamics of particle deposition within wavy pipes by utilizing the RNG k-ε turbulence model with enhanced wall treatment for fluid flow simulation and employing a Lagrangian particle tracking model. The finite volume approach is adopted to solve the mathematical model of the current problem. The rate of aerosol particle deposition within a wavy pipe under turbulent flow conditions is systematically explored by varying the size of particles (1 ≤ dp (μm) ≤ 30), Reynolds numbers (5000 ≤ Re ≤ 10,000), and other parameters like wave frequency (3 ≤ f ≤ 7), wave amplitude (5 ≤ a (mm) ≤ 15), and diameter of the pipe (10 ≤ D (mm) ≤ 30). The findings reveal significant correlations between these parameters and deposition efficiency, shedding light on the complex interplay between geometric factors and flow characteristics within the wavy pipe configurations. Notably, larger pipe diameters and higher wave amplitudes are found to enhance deposition rates, while the optimal wave frequencies exist at intermediate values. Additionally, alterations in flow velocity exhibit an inverse relationship with deposition efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
Stepping up: From lab scale to industrial processes Nanoparticle deagglomeration driven by a high shear mixer and intensification of low-speed stirring in a viscous system Technology for removing PM2.5 in clean coal processes Structural optimization of separation layer and porous PES substrate for enhanced pervaporation desalination performance Performance study of lithium ion sieve composite in high gravity for Li+ adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1