{"title":"BaTiO3 中高频偏振开关的极限","authors":"Hasin Tamim, Rajan Khadka, Pawel Keblinski","doi":"10.1063/5.0218240","DOIUrl":null,"url":null,"abstract":"In this work, we use molecular dynamics simulations to investigate the switching behavior of BaTiO3 ferroelectric under the application of a high-amplitude high-frequency oscillatory electric field. While at lower frequencies, we observe a standard square-shaped hysteresis loop behavior, at frequencies approaching 1 THz, the hysteresis loop has an ellipsoidal shape. As the frequency increases, the average polarization oscillates without switching direction. To elucidate the origin of the ∼1 THz limit for the polarization switching, we analyzed unit-cell-level polarization vector maps. In this context, the analysis of the low-frequency switching events revealed that in addition to the majority of the polarization vectors exhibiting rapid switching, some “metastable” aligned polarization vectors persist longer with an average lifetime of ∼1 ps. As the frequency increases to the THz range, several polarization vector lines remain unswitched, thus preventing the polarization switching at the simulation domain level. Furthermore, we observe that with the increase in the amplitude of the applied electric field, one can increase the frequency at which switching is observed.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limits of high-frequency polarization switching in BaTiO3\",\"authors\":\"Hasin Tamim, Rajan Khadka, Pawel Keblinski\",\"doi\":\"10.1063/5.0218240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we use molecular dynamics simulations to investigate the switching behavior of BaTiO3 ferroelectric under the application of a high-amplitude high-frequency oscillatory electric field. While at lower frequencies, we observe a standard square-shaped hysteresis loop behavior, at frequencies approaching 1 THz, the hysteresis loop has an ellipsoidal shape. As the frequency increases, the average polarization oscillates without switching direction. To elucidate the origin of the ∼1 THz limit for the polarization switching, we analyzed unit-cell-level polarization vector maps. In this context, the analysis of the low-frequency switching events revealed that in addition to the majority of the polarization vectors exhibiting rapid switching, some “metastable” aligned polarization vectors persist longer with an average lifetime of ∼1 ps. As the frequency increases to the THz range, several polarization vector lines remain unswitched, thus preventing the polarization switching at the simulation domain level. Furthermore, we observe that with the increase in the amplitude of the applied electric field, one can increase the frequency at which switching is observed.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0218240\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0218240","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Limits of high-frequency polarization switching in BaTiO3
In this work, we use molecular dynamics simulations to investigate the switching behavior of BaTiO3 ferroelectric under the application of a high-amplitude high-frequency oscillatory electric field. While at lower frequencies, we observe a standard square-shaped hysteresis loop behavior, at frequencies approaching 1 THz, the hysteresis loop has an ellipsoidal shape. As the frequency increases, the average polarization oscillates without switching direction. To elucidate the origin of the ∼1 THz limit for the polarization switching, we analyzed unit-cell-level polarization vector maps. In this context, the analysis of the low-frequency switching events revealed that in addition to the majority of the polarization vectors exhibiting rapid switching, some “metastable” aligned polarization vectors persist longer with an average lifetime of ∼1 ps. As the frequency increases to the THz range, several polarization vector lines remain unswitched, thus preventing the polarization switching at the simulation domain level. Furthermore, we observe that with the increase in the amplitude of the applied electric field, one can increase the frequency at which switching is observed.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.