利用可逆网络在双踪动态正电子发射计算机中进行时态图像序列分离

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-30 DOI:10.1109/TRPMS.2024.3407120
Chuanfu Sun;Bin Huang;Jie Sun;Yangfan Ni;Huafeng Liu;Qian Xia;Qiegen Liu;Wentao Zhu
{"title":"利用可逆网络在双踪动态正电子发射计算机中进行时态图像序列分离","authors":"Chuanfu Sun;Bin Huang;Jie Sun;Yangfan Ni;Huafeng Liu;Qian Xia;Qiegen Liu;Wentao Zhu","doi":"10.1109/TRPMS.2024.3407120","DOIUrl":null,"url":null,"abstract":"Positron emission tomography (PET) is a widely used functional imaging technique in clinic. Compared to single-tracer PET, dual-tracer dynamic PET allows two sequences of different nuclear pharmaceuticals in one scan, revealing richer physiological information. However, dynamically separating the mixed signals in dual-tracer PET is challenging due to identical energy ~511 keV in gamma photon pairs from both tracers. We propose a method for dynamic PET dual-tracer separation based on invertible neural networks (DTS-INNs). This network enables the forward and backward process simultaneously. Therefore, producing the mixed image sequences from the separation results through backward process may impose extra constraints for optimizing the network. The loss is composed of two components corresponding to the forward and backward propagation processes, which results in more accurate gradient computations and more stable gradient propagation with cycle consistency. We assess our model’s performance using simulated and real data, comparing it with several reputable dual-tracer separation methods. The results of DTS-INN outperform counterparts with lower-mean square error, higher-structural similarity, and peak signal to noise ratio. Additionally, it exhibits robustness against noise levels, phantoms, tracer combinations, and scanning protocols, offering a dependable solution for dual-tracer PET image separation.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10542421","citationCount":"0","resultStr":"{\"title\":\"Temporal Image Sequence Separation in Dual-Tracer Dynamic PET With an Invertible Network\",\"authors\":\"Chuanfu Sun;Bin Huang;Jie Sun;Yangfan Ni;Huafeng Liu;Qian Xia;Qiegen Liu;Wentao Zhu\",\"doi\":\"10.1109/TRPMS.2024.3407120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positron emission tomography (PET) is a widely used functional imaging technique in clinic. Compared to single-tracer PET, dual-tracer dynamic PET allows two sequences of different nuclear pharmaceuticals in one scan, revealing richer physiological information. However, dynamically separating the mixed signals in dual-tracer PET is challenging due to identical energy ~511 keV in gamma photon pairs from both tracers. We propose a method for dynamic PET dual-tracer separation based on invertible neural networks (DTS-INNs). This network enables the forward and backward process simultaneously. Therefore, producing the mixed image sequences from the separation results through backward process may impose extra constraints for optimizing the network. The loss is composed of two components corresponding to the forward and backward propagation processes, which results in more accurate gradient computations and more stable gradient propagation with cycle consistency. We assess our model’s performance using simulated and real data, comparing it with several reputable dual-tracer separation methods. The results of DTS-INN outperform counterparts with lower-mean square error, higher-structural similarity, and peak signal to noise ratio. Additionally, it exhibits robustness against noise levels, phantoms, tracer combinations, and scanning protocols, offering a dependable solution for dual-tracer PET image separation.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10542421\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10542421/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10542421/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

正电子发射断层扫描(PET)是一种广泛应用于临床的功能成像技术。与单示踪剂正电子发射计算机断层成像相比,双示踪剂动态正电子发射计算机断层成像允许在一次扫描中使用两种不同的核药物序列,从而揭示更丰富的生理信息。然而,由于两种示踪剂的伽马光子对能量(约 511 keV)相同,动态分离双示踪剂 PET 中的混合信号具有挑战性。我们提出了一种基于可逆神经网络(DTS-INN)的动态 PET 双示踪剂分离方法。该网络可同时进行前向和后向处理。因此,通过后向处理根据分离结果生成混合图像序列可能会对网络的优化造成额外的限制。损耗由对应于前向和后向传播过程的两个部分组成,这使得梯度计算更加精确,梯度传播更加稳定,并具有周期一致性。我们使用模拟数据和真实数据评估了我们模型的性能,并将其与几种著名的双踪分离方法进行了比较。DTS-INN 的结果以更低的均方误差、更高的结构相似性和峰值信噪比优于同类方法。此外,DTS-INN 对噪音水平、模型、示踪剂组合和扫描方案都有很好的适应性,为双示踪剂 PET 图像分离提供了可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal Image Sequence Separation in Dual-Tracer Dynamic PET With an Invertible Network
Positron emission tomography (PET) is a widely used functional imaging technique in clinic. Compared to single-tracer PET, dual-tracer dynamic PET allows two sequences of different nuclear pharmaceuticals in one scan, revealing richer physiological information. However, dynamically separating the mixed signals in dual-tracer PET is challenging due to identical energy ~511 keV in gamma photon pairs from both tracers. We propose a method for dynamic PET dual-tracer separation based on invertible neural networks (DTS-INNs). This network enables the forward and backward process simultaneously. Therefore, producing the mixed image sequences from the separation results through backward process may impose extra constraints for optimizing the network. The loss is composed of two components corresponding to the forward and backward propagation processes, which results in more accurate gradient computations and more stable gradient propagation with cycle consistency. We assess our model’s performance using simulated and real data, comparing it with several reputable dual-tracer separation methods. The results of DTS-INN outperform counterparts with lower-mean square error, higher-structural similarity, and peak signal to noise ratio. Additionally, it exhibits robustness against noise levels, phantoms, tracer combinations, and scanning protocols, offering a dependable solution for dual-tracer PET image separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents Introducing IEEE Collabratec IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Member Get-a-Member (MGM) Program
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1