{"title":"固态电池中界面纳米缺陷和纳米固体的化学-电子-机械相场模拟","authors":"Yuki Kamikawa, Koji Amezawa, Kenjiro Terada","doi":"10.1038/s43246-024-00600-6","DOIUrl":null,"url":null,"abstract":"Solid electrolytes encompass various types of nanodefects, including grain boundaries and nanovoids at the Li-metal/solid electrolyte interface, where lithium dendrite penetration has been extensively observed. Despite the importance of ion transport near grain boundaries with different anisotropy and the combinatorial effects with interfacial nanovoids, a comprehensive understanding of these phenomena has remains elusive. Here, we develop a chemo-electro-mechanical phase-field model to elucidate how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids. The investigation unveils a grain-boundary-anisotropy-dependent behavior for Li-ion transport correlated with the presence of interfacial nanovoids. Notably, the Σ1 grain boundary exhibits faster Li dendrite growth, particularly in the co-presence of interfacial nanovoids. The model quantitatively reveals whether interfacial electronic properties dominate Li dendrite morphology and penetration, providing a strategy for designing stable Li/solid electrolyte interfaces. These findings help prioritize approaches for optimally tailoring nanodefects and exploiting synergetic effects at the interface to prevent dendrite formation. Grain boundary nanodefects exist in solid electrolytes but detailed factors affecting ion transport are still limited. Here, a chemo-electro-mechanical phase-field model shows how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00600-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Chemo-electro-mechanical phase-field simulation of interfacial nanodefects and nanovoids in solid-state batteries\",\"authors\":\"Yuki Kamikawa, Koji Amezawa, Kenjiro Terada\",\"doi\":\"10.1038/s43246-024-00600-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid electrolytes encompass various types of nanodefects, including grain boundaries and nanovoids at the Li-metal/solid electrolyte interface, where lithium dendrite penetration has been extensively observed. Despite the importance of ion transport near grain boundaries with different anisotropy and the combinatorial effects with interfacial nanovoids, a comprehensive understanding of these phenomena has remains elusive. Here, we develop a chemo-electro-mechanical phase-field model to elucidate how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids. The investigation unveils a grain-boundary-anisotropy-dependent behavior for Li-ion transport correlated with the presence of interfacial nanovoids. Notably, the Σ1 grain boundary exhibits faster Li dendrite growth, particularly in the co-presence of interfacial nanovoids. The model quantitatively reveals whether interfacial electronic properties dominate Li dendrite morphology and penetration, providing a strategy for designing stable Li/solid electrolyte interfaces. These findings help prioritize approaches for optimally tailoring nanodefects and exploiting synergetic effects at the interface to prevent dendrite formation. Grain boundary nanodefects exist in solid electrolytes but detailed factors affecting ion transport are still limited. Here, a chemo-electro-mechanical phase-field model shows how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00600-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00600-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00600-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemo-electro-mechanical phase-field simulation of interfacial nanodefects and nanovoids in solid-state batteries
Solid electrolytes encompass various types of nanodefects, including grain boundaries and nanovoids at the Li-metal/solid electrolyte interface, where lithium dendrite penetration has been extensively observed. Despite the importance of ion transport near grain boundaries with different anisotropy and the combinatorial effects with interfacial nanovoids, a comprehensive understanding of these phenomena has remains elusive. Here, we develop a chemo-electro-mechanical phase-field model to elucidate how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids. The investigation unveils a grain-boundary-anisotropy-dependent behavior for Li-ion transport correlated with the presence of interfacial nanovoids. Notably, the Σ1 grain boundary exhibits faster Li dendrite growth, particularly in the co-presence of interfacial nanovoids. The model quantitatively reveals whether interfacial electronic properties dominate Li dendrite morphology and penetration, providing a strategy for designing stable Li/solid electrolyte interfaces. These findings help prioritize approaches for optimally tailoring nanodefects and exploiting synergetic effects at the interface to prevent dendrite formation. Grain boundary nanodefects exist in solid electrolytes but detailed factors affecting ion transport are still limited. Here, a chemo-electro-mechanical phase-field model shows how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.