利用人工智能优化细分市场的 SEM 参数 - 第 2 部分:设计和训练回归模型

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-17 DOI:10.1016/j.commatsci.2024.113283
{"title":"利用人工智能优化细分市场的 SEM 参数 - 第 2 部分:设计和训练回归模型","authors":"","doi":"10.1016/j.commatsci.2024.113283","DOIUrl":null,"url":null,"abstract":"<div><p>Selecting the best microscope parameters for optimal image quality currently relies on microscopists; there exist no procedures or guidelines for tuning parameters to ensure the desired image quality is achieved. More importantly, for quantitative analysis purposes, adequate image quality for segmentation should be prioritized. This paper is the second of two parts, describing a regression model, mixed input, multiple output with Keras TensorFlow, trained to predict the beam energy and probe current, two important parameters for image quality. Specifically, parameters are predicted to optimize the image quality for segmentation, using a generated training set, as described in Part 1 of this paper. Model performance is then tested on models trained with multiple different training sets, and with different proportions of simulated and acquired data. First, to examine the impact of the training set on the prediction accuracy and then, to evaluate the importance of including real data during training. The model successfully predicted the beam energy and probe current to set on the microscope to improve image quality for segmentation. Models trained with both simulated and acquired data performed the best, as evaluated by their efficacy at improving the image quality for feature segmentation.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927025624005044/pdfft?md5=91d8ca5b2512ebcf564583e96b35d0d1&pid=1-s2.0-S0927025624005044-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimizing SEM parameters for segmentation with AI – Part 2: Designing and training a regression model\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selecting the best microscope parameters for optimal image quality currently relies on microscopists; there exist no procedures or guidelines for tuning parameters to ensure the desired image quality is achieved. More importantly, for quantitative analysis purposes, adequate image quality for segmentation should be prioritized. This paper is the second of two parts, describing a regression model, mixed input, multiple output with Keras TensorFlow, trained to predict the beam energy and probe current, two important parameters for image quality. Specifically, parameters are predicted to optimize the image quality for segmentation, using a generated training set, as described in Part 1 of this paper. Model performance is then tested on models trained with multiple different training sets, and with different proportions of simulated and acquired data. First, to examine the impact of the training set on the prediction accuracy and then, to evaluate the importance of including real data during training. The model successfully predicted the beam energy and probe current to set on the microscope to improve image quality for segmentation. Models trained with both simulated and acquired data performed the best, as evaluated by their efficacy at improving the image quality for feature segmentation.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005044/pdfft?md5=91d8ca5b2512ebcf564583e96b35d0d1&pid=1-s2.0-S0927025624005044-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005044\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005044","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,选择最佳显微镜参数以获得最佳图像质量的工作主要依靠显微镜专家;目前还没有调整参数以确保获得理想图像质量的程序或指南。更重要的是,出于定量分析的目的,应优先考虑用于分割的适当图像质量。本文是两部分中的第二部分,介绍使用 Keras TensorFlow 训练的回归模型、混合输入、多重输出,以预测光束能量和探针电流这两个影响图像质量的重要参数。具体来说,如本文第一部分所述,使用生成的训练集预测参数,以优化分割图像的质量。然后,使用多个不同的训练集、不同比例的模拟数据和获取的数据对训练出的模型进行性能测试。首先,测试训练集对预测准确性的影响,然后,评估在训练过程中加入真实数据的重要性。该模型成功预测了显微镜上应设置的光束能量和探针电流,从而提高了分割图像的质量。使用模拟数据和获取的数据训练的模型表现最佳,其评价标准是模型在提高图像质量以进行特征分割方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing SEM parameters for segmentation with AI – Part 2: Designing and training a regression model

Selecting the best microscope parameters for optimal image quality currently relies on microscopists; there exist no procedures or guidelines for tuning parameters to ensure the desired image quality is achieved. More importantly, for quantitative analysis purposes, adequate image quality for segmentation should be prioritized. This paper is the second of two parts, describing a regression model, mixed input, multiple output with Keras TensorFlow, trained to predict the beam energy and probe current, two important parameters for image quality. Specifically, parameters are predicted to optimize the image quality for segmentation, using a generated training set, as described in Part 1 of this paper. Model performance is then tested on models trained with multiple different training sets, and with different proportions of simulated and acquired data. First, to examine the impact of the training set on the prediction accuracy and then, to evaluate the importance of including real data during training. The model successfully predicted the beam energy and probe current to set on the microscope to improve image quality for segmentation. Models trained with both simulated and acquired data performed the best, as evaluated by their efficacy at improving the image quality for feature segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1