{"title":"降雨预测机器学习模型的比较分析","authors":"Pritee Krishna Das, Rajiv Lochan Sahu, Prakash Chandra Swain","doi":"10.1016/j.jastp.2024.106340","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting rainfall is essential for many applications, including agriculture, hydrology, and disaster management. In this work, we undertake a comparison examination of various machine learning models to forecast rainfall based on meteorological data. The target variable in this study is rainfall, and the dataset used includes characteristics like temperature, relative humidity, wind speed, and wind direction. The following seven machine learning models were assessed: Support Vector Regression (SVR), Multivariate adaptive regression splines (MARS), Random Forest Regression, and Deep Neural Network with Historical Data (DWFH), Haar Wavelet Function, Decision Tree and Discrete wavelet Transform (DWT). Data preprocessing, which includes standardisation and lagging to capture temporal dependencies, comes first in the analysis phase. A wavelet transformation is also used to capture complex patterns in the data. Each model is tested on a different test set after being trained on a subset of the dataset. The results are assessed using the Root Mean Squared Error (RMSE) and Mean Squared Error (MSE), focusing on the RMSE and MSE values for better comparison across models. Our findings reveal that the DWFH model achieved an RMSE of 0.0138807 mm and MSE of 0.000193 mm<sup>2</sup>, demonstrating their effectiveness in predicting rainfall. The Random Forest and SVR models also provided competitive results. This study highlights the importance of selecting an appropriate machine learning model for rainfall prediction and the significance of preprocessing techniques in improving model performance. These insights can aid decision-makers in choosing the most suitable model for their specific application, contributing to more accurate rainfall predictions and enhanced decision support systems.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"264 ","pages":"Article 106340"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of machine learning models for rainfall prediction\",\"authors\":\"Pritee Krishna Das, Rajiv Lochan Sahu, Prakash Chandra Swain\",\"doi\":\"10.1016/j.jastp.2024.106340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting rainfall is essential for many applications, including agriculture, hydrology, and disaster management. In this work, we undertake a comparison examination of various machine learning models to forecast rainfall based on meteorological data. The target variable in this study is rainfall, and the dataset used includes characteristics like temperature, relative humidity, wind speed, and wind direction. The following seven machine learning models were assessed: Support Vector Regression (SVR), Multivariate adaptive regression splines (MARS), Random Forest Regression, and Deep Neural Network with Historical Data (DWFH), Haar Wavelet Function, Decision Tree and Discrete wavelet Transform (DWT). Data preprocessing, which includes standardisation and lagging to capture temporal dependencies, comes first in the analysis phase. A wavelet transformation is also used to capture complex patterns in the data. Each model is tested on a different test set after being trained on a subset of the dataset. The results are assessed using the Root Mean Squared Error (RMSE) and Mean Squared Error (MSE), focusing on the RMSE and MSE values for better comparison across models. Our findings reveal that the DWFH model achieved an RMSE of 0.0138807 mm and MSE of 0.000193 mm<sup>2</sup>, demonstrating their effectiveness in predicting rainfall. The Random Forest and SVR models also provided competitive results. This study highlights the importance of selecting an appropriate machine learning model for rainfall prediction and the significance of preprocessing techniques in improving model performance. These insights can aid decision-makers in choosing the most suitable model for their specific application, contributing to more accurate rainfall predictions and enhanced decision support systems.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"264 \",\"pages\":\"Article 106340\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001688\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001688","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Comparative analysis of machine learning models for rainfall prediction
Predicting rainfall is essential for many applications, including agriculture, hydrology, and disaster management. In this work, we undertake a comparison examination of various machine learning models to forecast rainfall based on meteorological data. The target variable in this study is rainfall, and the dataset used includes characteristics like temperature, relative humidity, wind speed, and wind direction. The following seven machine learning models were assessed: Support Vector Regression (SVR), Multivariate adaptive regression splines (MARS), Random Forest Regression, and Deep Neural Network with Historical Data (DWFH), Haar Wavelet Function, Decision Tree and Discrete wavelet Transform (DWT). Data preprocessing, which includes standardisation and lagging to capture temporal dependencies, comes first in the analysis phase. A wavelet transformation is also used to capture complex patterns in the data. Each model is tested on a different test set after being trained on a subset of the dataset. The results are assessed using the Root Mean Squared Error (RMSE) and Mean Squared Error (MSE), focusing on the RMSE and MSE values for better comparison across models. Our findings reveal that the DWFH model achieved an RMSE of 0.0138807 mm and MSE of 0.000193 mm2, demonstrating their effectiveness in predicting rainfall. The Random Forest and SVR models also provided competitive results. This study highlights the importance of selecting an appropriate machine learning model for rainfall prediction and the significance of preprocessing techniques in improving model performance. These insights can aid decision-makers in choosing the most suitable model for their specific application, contributing to more accurate rainfall predictions and enhanced decision support systems.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.