通过 MD 模拟深入研究纳米晶 Ni 和 FeCoCrNi 高熵合金在长时间辐照过程中缺陷的产生和积累

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-09-07 DOI:10.1016/j.commatsci.2024.113341
{"title":"通过 MD 模拟深入研究纳米晶 Ni 和 FeCoCrNi 高熵合金在长时间辐照过程中缺陷的产生和积累","authors":"","doi":"10.1016/j.commatsci.2024.113341","DOIUrl":null,"url":null,"abstract":"<div><p>Because of remarkable irradiation resistance and mechanical properties, high entropy alloys (HEAs) are expected to be a candidate structural material in the next-generation nuclear power plants. Besides, the nano-crystalline (NC) materials also exhibit excellent radiation tolerance and good thermal stability. The NC-HEAs may have superior irradiation resistance than both NC and HEA materials. However, how the irradiation-resistant effects of HEAs and grain boundary (GB) jointly affect the irradiation damage evolution in NC HEAs is an interesting but rarely reported topic. Considering these, the present work investigated the irradiation defect production and accumulation characteristics in NC-HEA FeCoCrNi and NC-Ni by cascade overlapping simulations. The evolution of irradiation clusters within NC grains was quantitatively analyzed for the first time using a newly developed method. The results show that the irradiation defects produced in NC-HEA are more diminutive and uniformly distributed than those in NC-Ni with a similar irradiation dose despite the total number of survived point defects being very close in the two cases. Further investigation shows that such a better irradiation resistance of NC-HEA can be attributed to the synergy between the severe lattice distortion effect in HEAs and the interstitial sink effect of GBs in NC. The present study may provide some fundamental understanding of the irradiation defect evolution mechanisms for the novel HEAs that potentially serve as structural materials in advanced reactors.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-depth study of the production and accumulation of defects during prolonged irradiation of nano-crystalline Ni and FeCoCrNi high-entropy alloy through MD simulation\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Because of remarkable irradiation resistance and mechanical properties, high entropy alloys (HEAs) are expected to be a candidate structural material in the next-generation nuclear power plants. Besides, the nano-crystalline (NC) materials also exhibit excellent radiation tolerance and good thermal stability. The NC-HEAs may have superior irradiation resistance than both NC and HEA materials. However, how the irradiation-resistant effects of HEAs and grain boundary (GB) jointly affect the irradiation damage evolution in NC HEAs is an interesting but rarely reported topic. Considering these, the present work investigated the irradiation defect production and accumulation characteristics in NC-HEA FeCoCrNi and NC-Ni by cascade overlapping simulations. The evolution of irradiation clusters within NC grains was quantitatively analyzed for the first time using a newly developed method. The results show that the irradiation defects produced in NC-HEA are more diminutive and uniformly distributed than those in NC-Ni with a similar irradiation dose despite the total number of survived point defects being very close in the two cases. Further investigation shows that such a better irradiation resistance of NC-HEA can be attributed to the synergy between the severe lattice distortion effect in HEAs and the interstitial sink effect of GBs in NC. The present study may provide some fundamental understanding of the irradiation defect evolution mechanisms for the novel HEAs that potentially serve as structural materials in advanced reactors.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005627\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005627","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(HEAs)具有卓越的抗辐照性能和机械性能,有望成为下一代核电站的候选结构材料。此外,纳米晶(NC)材料还具有出色的耐辐射性和良好的热稳定性。与 NC 和 HEA 材料相比,NC-HEA 可能具有更强的抗辐照能力。然而,HEA 和晶界(GB)的抗辐照效应如何共同影响 NC HEA 的辐照损伤演变是一个有趣但鲜有报道的课题。有鉴于此,本研究通过级联叠加模拟研究了NC-HEA铁铬镍和NC-Ni中辐照缺陷的产生和累积特征。利用新开发的方法,首次定量分析了 NC 晶粒内辐照簇的演变。结果表明,在辐照剂量相似的情况下,NC-HEA 中产生的辐照缺陷比 NC-Ni 中产生的辐照缺陷更微小且分布更均匀,尽管两种情况下存活的点缺陷总数非常接近。进一步的研究表明,NC-HEA 的抗辐照性能之所以如此之好,是因为 HEA 中严重的晶格畸变效应与 NC 中 GB 的间隙沉降效应之间的协同作用。本研究可为新型 HEA 的辐照缺陷演化机制提供一些基本认识,这些新型 HEA 有可能成为先进反应堆的结构材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-depth study of the production and accumulation of defects during prolonged irradiation of nano-crystalline Ni and FeCoCrNi high-entropy alloy through MD simulation

Because of remarkable irradiation resistance and mechanical properties, high entropy alloys (HEAs) are expected to be a candidate structural material in the next-generation nuclear power plants. Besides, the nano-crystalline (NC) materials also exhibit excellent radiation tolerance and good thermal stability. The NC-HEAs may have superior irradiation resistance than both NC and HEA materials. However, how the irradiation-resistant effects of HEAs and grain boundary (GB) jointly affect the irradiation damage evolution in NC HEAs is an interesting but rarely reported topic. Considering these, the present work investigated the irradiation defect production and accumulation characteristics in NC-HEA FeCoCrNi and NC-Ni by cascade overlapping simulations. The evolution of irradiation clusters within NC grains was quantitatively analyzed for the first time using a newly developed method. The results show that the irradiation defects produced in NC-HEA are more diminutive and uniformly distributed than those in NC-Ni with a similar irradiation dose despite the total number of survived point defects being very close in the two cases. Further investigation shows that such a better irradiation resistance of NC-HEA can be attributed to the synergy between the severe lattice distortion effect in HEAs and the interstitial sink effect of GBs in NC. The present study may provide some fundamental understanding of the irradiation defect evolution mechanisms for the novel HEAs that potentially serve as structural materials in advanced reactors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1