Wei Lu, Xin Xia, Yihang Ma, Hongtao He, Don O Kikkawa, Lu Zhang, Bo Zhang, Xiangji Liu
{"title":"铜/钆共掺羟基磷灰石/聚乳酸-聚乙醇酸复合材料可增强核磁共振成像和骨缺损再生。","authors":"Wei Lu, Xin Xia, Yihang Ma, Hongtao He, Don O Kikkawa, Lu Zhang, Bo Zhang, Xiangji Liu","doi":"10.1177/08853282241276064","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The hydroxyapatite (HA)/poly(lactide-co-glycolide) acid (PLGA) composite material is a widely used orthopedic implant due to its excellent biocompatibility and plasticity. Recent advancements in cation doping have expanded its potential biological applications. However, conventional HA/PLGA composites are not visible under X-rays post-implantation and have limited osteogenic induction capabilities. Copper (Cu) is known to regulate osteoblast proliferation and differentiation, while gadolinium (Gd) can significantly enhance the magnetic resonance imaging (MRI) capabilities of materials. <b>Methods:</b> This study aimed to investigate whether incorporating Cu and Gd into an HA/PLGA composite could enhance the osteogenic properties, in vivo bone defect repair, and MRI characteristics. We prepared a Cu/Gd@HA/PLGA composite and assessed its performance. <b>Results:</b> Material characterization confirmed that Cu/Gd@HA retained the morphology and crystal structure of HA. The Cu/Gd@HA/PLGA composite exhibited excellent nuclear magnetic imaging capabilities, porosity, and hydrophilicity, which are conducive to cell adhesion and implant detection. In vitro experiments demonstrated that the Cu/Gd@HA/PLGA composite enhanced the proliferation, differentiation, and adhesion of MC3T3-E1 cells, and upregulated COL-1 and BMP-2 expression at both gene and protein levels. In vivo studies showed that the Cu/Gd@HA/PLGA composite maintained strong T1-weighted MRI signals and significantly improved the bone defect healing rate in rats. <b>Conclusion:</b> These findings indicate that the Cu/Gd@HA/PLGA composites significantly enhance T1-weighted MRI capabilities, promote osteoblast proliferation and differentiation in vitro, and accelerate bone defect healing in vivo.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"632-647"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu/Gd co-doped hydroxyapatite/poly lactic-co-glycolic acid composites enhance MRI imaging and bone defect regeneration.\",\"authors\":\"Wei Lu, Xin Xia, Yihang Ma, Hongtao He, Don O Kikkawa, Lu Zhang, Bo Zhang, Xiangji Liu\",\"doi\":\"10.1177/08853282241276064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> The hydroxyapatite (HA)/poly(lactide-co-glycolide) acid (PLGA) composite material is a widely used orthopedic implant due to its excellent biocompatibility and plasticity. Recent advancements in cation doping have expanded its potential biological applications. However, conventional HA/PLGA composites are not visible under X-rays post-implantation and have limited osteogenic induction capabilities. Copper (Cu) is known to regulate osteoblast proliferation and differentiation, while gadolinium (Gd) can significantly enhance the magnetic resonance imaging (MRI) capabilities of materials. <b>Methods:</b> This study aimed to investigate whether incorporating Cu and Gd into an HA/PLGA composite could enhance the osteogenic properties, in vivo bone defect repair, and MRI characteristics. We prepared a Cu/Gd@HA/PLGA composite and assessed its performance. <b>Results:</b> Material characterization confirmed that Cu/Gd@HA retained the morphology and crystal structure of HA. The Cu/Gd@HA/PLGA composite exhibited excellent nuclear magnetic imaging capabilities, porosity, and hydrophilicity, which are conducive to cell adhesion and implant detection. In vitro experiments demonstrated that the Cu/Gd@HA/PLGA composite enhanced the proliferation, differentiation, and adhesion of MC3T3-E1 cells, and upregulated COL-1 and BMP-2 expression at both gene and protein levels. In vivo studies showed that the Cu/Gd@HA/PLGA composite maintained strong T1-weighted MRI signals and significantly improved the bone defect healing rate in rats. <b>Conclusion:</b> These findings indicate that the Cu/Gd@HA/PLGA composites significantly enhance T1-weighted MRI capabilities, promote osteoblast proliferation and differentiation in vitro, and accelerate bone defect healing in vivo.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"632-647\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241276064\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241276064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Cu/Gd co-doped hydroxyapatite/poly lactic-co-glycolic acid composites enhance MRI imaging and bone defect regeneration.
Background: The hydroxyapatite (HA)/poly(lactide-co-glycolide) acid (PLGA) composite material is a widely used orthopedic implant due to its excellent biocompatibility and plasticity. Recent advancements in cation doping have expanded its potential biological applications. However, conventional HA/PLGA composites are not visible under X-rays post-implantation and have limited osteogenic induction capabilities. Copper (Cu) is known to regulate osteoblast proliferation and differentiation, while gadolinium (Gd) can significantly enhance the magnetic resonance imaging (MRI) capabilities of materials. Methods: This study aimed to investigate whether incorporating Cu and Gd into an HA/PLGA composite could enhance the osteogenic properties, in vivo bone defect repair, and MRI characteristics. We prepared a Cu/Gd@HA/PLGA composite and assessed its performance. Results: Material characterization confirmed that Cu/Gd@HA retained the morphology and crystal structure of HA. The Cu/Gd@HA/PLGA composite exhibited excellent nuclear magnetic imaging capabilities, porosity, and hydrophilicity, which are conducive to cell adhesion and implant detection. In vitro experiments demonstrated that the Cu/Gd@HA/PLGA composite enhanced the proliferation, differentiation, and adhesion of MC3T3-E1 cells, and upregulated COL-1 and BMP-2 expression at both gene and protein levels. In vivo studies showed that the Cu/Gd@HA/PLGA composite maintained strong T1-weighted MRI signals and significantly improved the bone defect healing rate in rats. Conclusion: These findings indicate that the Cu/Gd@HA/PLGA composites significantly enhance T1-weighted MRI capabilities, promote osteoblast proliferation and differentiation in vitro, and accelerate bone defect healing in vivo.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.