Mingxuan Liu, Chengpeng Hu, Xiangda Meng, Xuejie Sun, Yao Zhang, Bohan Xing, Ming Qiu, Yining Dong, Song Jin, Hao Tian
{"title":"K0.4Na0.6NbO3 单晶的热力学势构造和双轴应力分析","authors":"Mingxuan Liu, Chengpeng Hu, Xiangda Meng, Xuejie Sun, Yao Zhang, Bohan Xing, Ming Qiu, Yining Dong, Song Jin, Hao Tian","doi":"10.1063/5.0223407","DOIUrl":null,"url":null,"abstract":"The macroscopic properties of piezoelectric materials can be profoundly influenced by stress. In this research, thermodynamic potential parameters of K0.4Na0.6NbO3 (KNN) single crystals have been experimentally quantified to assess the effects of stress. Leveraging the Landau thermodynamic potential theory, it has been identified that the application of biaxial tensile stress causes a significant elevation in both the piezoelectric property and phase transition temperature in KNN crystals. This transition remarkably extends their working range and improves the material's applicated potential. The coherence between these computational outcomes and experimental data—from the strategic growth of KNN single crystals with internal stress—underscores the reliability of our findings (dielectric constant from 213 to 1274, TO-T from 180 to 234 °C). Additionally, theoretical calculation predicts a potential enhancement in the piezoelectric capabilities of KNN single crystals. This study provides valuable insights for the growth of high-quality piezoelectric crystals and further promotes the application of lead-free piezoelectric materials.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic potential construction and biaxial stress analysis of K0.4Na0.6NbO3 single crystals\",\"authors\":\"Mingxuan Liu, Chengpeng Hu, Xiangda Meng, Xuejie Sun, Yao Zhang, Bohan Xing, Ming Qiu, Yining Dong, Song Jin, Hao Tian\",\"doi\":\"10.1063/5.0223407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The macroscopic properties of piezoelectric materials can be profoundly influenced by stress. In this research, thermodynamic potential parameters of K0.4Na0.6NbO3 (KNN) single crystals have been experimentally quantified to assess the effects of stress. Leveraging the Landau thermodynamic potential theory, it has been identified that the application of biaxial tensile stress causes a significant elevation in both the piezoelectric property and phase transition temperature in KNN crystals. This transition remarkably extends their working range and improves the material's applicated potential. The coherence between these computational outcomes and experimental data—from the strategic growth of KNN single crystals with internal stress—underscores the reliability of our findings (dielectric constant from 213 to 1274, TO-T from 180 to 234 °C). Additionally, theoretical calculation predicts a potential enhancement in the piezoelectric capabilities of KNN single crystals. This study provides valuable insights for the growth of high-quality piezoelectric crystals and further promotes the application of lead-free piezoelectric materials.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223407\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0223407","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Thermodynamic potential construction and biaxial stress analysis of K0.4Na0.6NbO3 single crystals
The macroscopic properties of piezoelectric materials can be profoundly influenced by stress. In this research, thermodynamic potential parameters of K0.4Na0.6NbO3 (KNN) single crystals have been experimentally quantified to assess the effects of stress. Leveraging the Landau thermodynamic potential theory, it has been identified that the application of biaxial tensile stress causes a significant elevation in both the piezoelectric property and phase transition temperature in KNN crystals. This transition remarkably extends their working range and improves the material's applicated potential. The coherence between these computational outcomes and experimental data—from the strategic growth of KNN single crystals with internal stress—underscores the reliability of our findings (dielectric constant from 213 to 1274, TO-T from 180 to 234 °C). Additionally, theoretical calculation predicts a potential enhancement in the piezoelectric capabilities of KNN single crystals. This study provides valuable insights for the growth of high-quality piezoelectric crystals and further promotes the application of lead-free piezoelectric materials.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.