Yu Wang, Yingqiang Yang, Pengbo Guo, Yi Chen, Yong Chen, Yong Cheng, Jianrong Xiao, Xinyu Li
{"title":"原位构建内置催化剂的序贯纳米反应器,作为锂硫电池的自支撑正极","authors":"Yu Wang, Yingqiang Yang, Pengbo Guo, Yi Chen, Yong Chen, Yong Cheng, Jianrong Xiao, Xinyu Li","doi":"10.1063/5.0229114","DOIUrl":null,"url":null,"abstract":"Architecture design and optimization are essential in improving the performance of lithium–sulfur batteries. Herein, an all-in-one sequential architecture of CoSe catalysts confined in MOF-derived nanoreactors (NRs) interfacially welded on carbon cloth (CC) is constructed using an in situ strategy (abbreviated: S@CoSe-NRs/CC). NRs with built-in CoSe (CoSe-NRs) have special microenvironments and domain-limited catalysis for efficient adsorption, catalysis, and deposition. The weld interface between the CoSe-NRs and the CC forms a continuous and robust all-in-one conductive network. Both experiments and theoretical calculations demonstrate that the S@CoSe-NRs/CC offers stable interconnectivity and efficient space utilization for high sulfur loads and rapid ion transport supply, providing a high initial discharge capacity of 1320 mA h g−1 at 0.1 C with a capacity decay rate as low as 0.003% per turn after 1000 cycles. This study offers unique insights and revelations for realizing the rational design of high-performance energy storage devices.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ construction of sequential nanoreactor with built-in catalyst as self-supporting cathode for lithium–sulfur batteries\",\"authors\":\"Yu Wang, Yingqiang Yang, Pengbo Guo, Yi Chen, Yong Chen, Yong Cheng, Jianrong Xiao, Xinyu Li\",\"doi\":\"10.1063/5.0229114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Architecture design and optimization are essential in improving the performance of lithium–sulfur batteries. Herein, an all-in-one sequential architecture of CoSe catalysts confined in MOF-derived nanoreactors (NRs) interfacially welded on carbon cloth (CC) is constructed using an in situ strategy (abbreviated: S@CoSe-NRs/CC). NRs with built-in CoSe (CoSe-NRs) have special microenvironments and domain-limited catalysis for efficient adsorption, catalysis, and deposition. The weld interface between the CoSe-NRs and the CC forms a continuous and robust all-in-one conductive network. Both experiments and theoretical calculations demonstrate that the S@CoSe-NRs/CC offers stable interconnectivity and efficient space utilization for high sulfur loads and rapid ion transport supply, providing a high initial discharge capacity of 1320 mA h g−1 at 0.1 C with a capacity decay rate as low as 0.003% per turn after 1000 cycles. This study offers unique insights and revelations for realizing the rational design of high-performance energy storage devices.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0229114\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0229114","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
结构设计和优化对于提高锂硫电池的性能至关重要。本文采用原位策略(缩写为:S@CoSe-NRs/CC),构建了一种将 CoSe 催化剂封闭在 MOF 衍生纳米反应器(NRs)中并界面焊接在碳布(CC)上的一体化顺序结构。内置 CoSe 的 NR(CoSe-NRs)具有特殊的微环境和域限制催化作用,可实现高效吸附、催化和沉积。CoSe-NRs 与 CC 之间的焊接界面形成了一个连续而坚固的一体化导电网络。实验和理论计算均证明,S@CoSe-NRs/CC 具有稳定的互联性和高效的空间利用率,可实现高硫负荷和快速离子传输供应,在 0.1 C 条件下可提供 1320 mA h g-1 的高初始放电容量,1000 次循环后容量衰减率低至 0.003%/圈。这项研究为实现高性能储能器件的合理设计提供了独特的见解和启示。
In situ construction of sequential nanoreactor with built-in catalyst as self-supporting cathode for lithium–sulfur batteries
Architecture design and optimization are essential in improving the performance of lithium–sulfur batteries. Herein, an all-in-one sequential architecture of CoSe catalysts confined in MOF-derived nanoreactors (NRs) interfacially welded on carbon cloth (CC) is constructed using an in situ strategy (abbreviated: S@CoSe-NRs/CC). NRs with built-in CoSe (CoSe-NRs) have special microenvironments and domain-limited catalysis for efficient adsorption, catalysis, and deposition. The weld interface between the CoSe-NRs and the CC forms a continuous and robust all-in-one conductive network. Both experiments and theoretical calculations demonstrate that the S@CoSe-NRs/CC offers stable interconnectivity and efficient space utilization for high sulfur loads and rapid ion transport supply, providing a high initial discharge capacity of 1320 mA h g−1 at 0.1 C with a capacity decay rate as low as 0.003% per turn after 1000 cycles. This study offers unique insights and revelations for realizing the rational design of high-performance energy storage devices.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.