{"title":"纳米粒子浓度对原油流态的影响 - 微通道中的纳米悬浮液","authors":"A.S. Lobasov , A.A. Shebeleva , M.I. Pryazhnikov , A.V. Minakov","doi":"10.1016/j.cep.2024.109980","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the results of an investigation into the effect of silica nanoparticles on two-phase flow regimes in a Y-shaped microchannel. The following fluids were subjected to investigation: oil, water, and a water-based suspension containing SiO2 nanoparticles at a weight concentration of 1 ≤ φ ≤ 10 %. A systematic investigation of the flow regimes revealed the following: slug, parallel, and droplet regimes. The ranges of existence of the obtained flow regimes were determined and flow regime maps were constructed as a function of fluid flow rates and dimensionless numbers. The results of the study demonstrated that the slug length and frequency of slug formation are influenced by varying silica concentrations. Furthermore, the correlation between slug length and nanoparticle concentration remains consistent as the suspension flow rate increases. The dependence of the ratio of oil layer width to channel width for suspensions with varying nanoparticle concentrations was quantified. A mathematical simulation of two-phase flow of immiscible fluids was conducted. The results of the numerical simulation demonstrated the existence of the flow regimes that had been previously identified through experimentation. The aforementioned methodology may therefore be employed for the investigation of the two-phase immiscible flow of oil and nanosuspension.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"205 ","pages":"Article 109980"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0255270124003180/pdfft?md5=67019e46cd1bf5ac400bf62ea60a3254&pid=1-s2.0-S0255270124003180-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of nanoparticle concentration on the flow regimes of crude oil – Nanosuspension in a microchannel\",\"authors\":\"A.S. Lobasov , A.A. Shebeleva , M.I. Pryazhnikov , A.V. Minakov\",\"doi\":\"10.1016/j.cep.2024.109980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the results of an investigation into the effect of silica nanoparticles on two-phase flow regimes in a Y-shaped microchannel. The following fluids were subjected to investigation: oil, water, and a water-based suspension containing SiO2 nanoparticles at a weight concentration of 1 ≤ φ ≤ 10 %. A systematic investigation of the flow regimes revealed the following: slug, parallel, and droplet regimes. The ranges of existence of the obtained flow regimes were determined and flow regime maps were constructed as a function of fluid flow rates and dimensionless numbers. The results of the study demonstrated that the slug length and frequency of slug formation are influenced by varying silica concentrations. Furthermore, the correlation between slug length and nanoparticle concentration remains consistent as the suspension flow rate increases. The dependence of the ratio of oil layer width to channel width for suspensions with varying nanoparticle concentrations was quantified. A mathematical simulation of two-phase flow of immiscible fluids was conducted. The results of the numerical simulation demonstrated the existence of the flow regimes that had been previously identified through experimentation. The aforementioned methodology may therefore be employed for the investigation of the two-phase immiscible flow of oil and nanosuspension.</p></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":\"205 \",\"pages\":\"Article 109980\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0255270124003180/pdfft?md5=67019e46cd1bf5ac400bf62ea60a3254&pid=1-s2.0-S0255270124003180-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0255270124003180\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003180","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了二氧化硅纳米颗粒对 Y 型微通道中两相流动机制影响的研究结果。研究对象为以下流体:油、水和含有重量浓度为 1 ≤ φ ≤ 10 % 的二氧化硅纳米颗粒的水基悬浮液。对流态的系统研究发现了以下几种流态:蛞蝓流态、平行流态和液滴流态。确定了所得流态的存在范围,并绘制了流态图,作为流体流速和无量纲数的函数。研究结果表明,蛞蝓长度和蛞蝓形成频率受不同二氧化硅浓度的影响。此外,随着悬浮液流速的增加,蛞蝓长度与纳米颗粒浓度之间的相关性保持一致。对不同纳米粒子浓度的悬浮液的油层宽度与通道宽度之比进行了量化。对不相溶流体的两相流动进行了数学模拟。数值模拟的结果表明,之前通过实验确定的流动状态是存在的。因此,上述方法可用于研究油和纳米悬浮液的两相不相溶流动。
Influence of nanoparticle concentration on the flow regimes of crude oil – Nanosuspension in a microchannel
This paper presents the results of an investigation into the effect of silica nanoparticles on two-phase flow regimes in a Y-shaped microchannel. The following fluids were subjected to investigation: oil, water, and a water-based suspension containing SiO2 nanoparticles at a weight concentration of 1 ≤ φ ≤ 10 %. A systematic investigation of the flow regimes revealed the following: slug, parallel, and droplet regimes. The ranges of existence of the obtained flow regimes were determined and flow regime maps were constructed as a function of fluid flow rates and dimensionless numbers. The results of the study demonstrated that the slug length and frequency of slug formation are influenced by varying silica concentrations. Furthermore, the correlation between slug length and nanoparticle concentration remains consistent as the suspension flow rate increases. The dependence of the ratio of oil layer width to channel width for suspensions with varying nanoparticle concentrations was quantified. A mathematical simulation of two-phase flow of immiscible fluids was conducted. The results of the numerical simulation demonstrated the existence of the flow regimes that had been previously identified through experimentation. The aforementioned methodology may therefore be employed for the investigation of the two-phase immiscible flow of oil and nanosuspension.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.