{"title":"利用小波分解和机器学习对配水系统进行泄漏检测和定位的两阶段方法","authors":"","doi":"10.1016/j.cie.2024.110534","DOIUrl":null,"url":null,"abstract":"<div><p>Water is a crucial resource for all forms of life, yet it is becoming increasingly scarce. A significant portion of water loss in urban and industrial areas is attributed to leaks. Addressing this issue is critical for enhancing efficiency, sustainability, and resource conservation. This paper presents a novel two-phase approach for leak detection and localization in water distribution systems using wavelet decomposition and machine learning for depth analysis of pressure signals. The first phase, Leak Detection, utilizes wavelet analysis to extract significant features from the daily pressure signal data. These features are then inputted into a Random Forest classifier, achieving a classification accuracy of 99% for distinguishing between “Leak” and “No Leak” scenarios. Following the detection, the Leak Localization phase aims to pinpoint the leak’s location using strategically placed sensors within the system. To facilitate understanding and application of our methodology, we have developed a user-friendly, web-based application designed for the detection and localization of water leaks on any given day. Extensive testing in a WDS named “L-Town” has validated our system’s ability to accurately identify leaks. The combination of wavelet-based signal analysis and the Random Forest algorithm forms an effective framework for advanced leak detection in water distribution systems. This approach holds great promise for future research and practical implementations in water management.</p></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-phase approach for leak detection and localization in water distribution systems using wavelet decomposition and machine learning\",\"authors\":\"\",\"doi\":\"10.1016/j.cie.2024.110534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water is a crucial resource for all forms of life, yet it is becoming increasingly scarce. A significant portion of water loss in urban and industrial areas is attributed to leaks. Addressing this issue is critical for enhancing efficiency, sustainability, and resource conservation. This paper presents a novel two-phase approach for leak detection and localization in water distribution systems using wavelet decomposition and machine learning for depth analysis of pressure signals. The first phase, Leak Detection, utilizes wavelet analysis to extract significant features from the daily pressure signal data. These features are then inputted into a Random Forest classifier, achieving a classification accuracy of 99% for distinguishing between “Leak” and “No Leak” scenarios. Following the detection, the Leak Localization phase aims to pinpoint the leak’s location using strategically placed sensors within the system. To facilitate understanding and application of our methodology, we have developed a user-friendly, web-based application designed for the detection and localization of water leaks on any given day. Extensive testing in a WDS named “L-Town” has validated our system’s ability to accurately identify leaks. The combination of wavelet-based signal analysis and the Random Forest algorithm forms an effective framework for advanced leak detection in water distribution systems. This approach holds great promise for future research and practical implementations in water management.</p></div>\",\"PeriodicalId\":55220,\"journal\":{\"name\":\"Computers & Industrial Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Industrial Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360835224006557\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224006557","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A two-phase approach for leak detection and localization in water distribution systems using wavelet decomposition and machine learning
Water is a crucial resource for all forms of life, yet it is becoming increasingly scarce. A significant portion of water loss in urban and industrial areas is attributed to leaks. Addressing this issue is critical for enhancing efficiency, sustainability, and resource conservation. This paper presents a novel two-phase approach for leak detection and localization in water distribution systems using wavelet decomposition and machine learning for depth analysis of pressure signals. The first phase, Leak Detection, utilizes wavelet analysis to extract significant features from the daily pressure signal data. These features are then inputted into a Random Forest classifier, achieving a classification accuracy of 99% for distinguishing between “Leak” and “No Leak” scenarios. Following the detection, the Leak Localization phase aims to pinpoint the leak’s location using strategically placed sensors within the system. To facilitate understanding and application of our methodology, we have developed a user-friendly, web-based application designed for the detection and localization of water leaks on any given day. Extensive testing in a WDS named “L-Town” has validated our system’s ability to accurately identify leaks. The combination of wavelet-based signal analysis and the Random Forest algorithm forms an effective framework for advanced leak detection in water distribution systems. This approach holds great promise for future research and practical implementations in water management.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.