{"title":"利用波导实现ε-近零介质工程(Adv. Phys. Res. 9/2024)","authors":"Peihang Li, Wendi Yan, Shuyu Wang, Pengyu Fu, Yongjian Zhang, Yue Li","doi":"10.1002/apxr.202470020","DOIUrl":null,"url":null,"abstract":"<p><b>Epsilon-Near-Zero Media</b></p><p>Epsilon-near-zero (ENZ) media have garnered widespread attention due to their unique electromagnetic properties, which result in distinctive features and phenomena. Among these, ENZ supercoupling and tunneling, a notable engineering application of ENZ media, is showcased on the cover. Electromagnetic waves propagate through ENZ media without experiencing phase changes, allowing them to bypass obstacles and sharp bends effortlessly. Y. Li and co-workers begin their review, 2400070, with an exploration of the fundamental properties of the waveguide ENZ media and then introduce the design principles of different ENZ-based electromagnetic devices. The review concludes with the challenges and potential development directions encountered by ENZ media in the realm of electromagnetic applications.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202470020","citationCount":"0","resultStr":"{\"title\":\"Engineering Epsilon-Near-Zero Media with Waveguides (Adv. Phys. Res. 9/2024)\",\"authors\":\"Peihang Li, Wendi Yan, Shuyu Wang, Pengyu Fu, Yongjian Zhang, Yue Li\",\"doi\":\"10.1002/apxr.202470020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Epsilon-Near-Zero Media</b></p><p>Epsilon-near-zero (ENZ) media have garnered widespread attention due to their unique electromagnetic properties, which result in distinctive features and phenomena. Among these, ENZ supercoupling and tunneling, a notable engineering application of ENZ media, is showcased on the cover. Electromagnetic waves propagate through ENZ media without experiencing phase changes, allowing them to bypass obstacles and sharp bends effortlessly. Y. Li and co-workers begin their review, 2400070, with an exploration of the fundamental properties of the waveguide ENZ media and then introduce the design principles of different ENZ-based electromagnetic devices. The review concludes with the challenges and potential development directions encountered by ENZ media in the realm of electromagnetic applications.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"3 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202470020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202470020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202470020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Engineering Epsilon-Near-Zero Media with Waveguides (Adv. Phys. Res. 9/2024)
Epsilon-Near-Zero Media
Epsilon-near-zero (ENZ) media have garnered widespread attention due to their unique electromagnetic properties, which result in distinctive features and phenomena. Among these, ENZ supercoupling and tunneling, a notable engineering application of ENZ media, is showcased on the cover. Electromagnetic waves propagate through ENZ media without experiencing phase changes, allowing them to bypass obstacles and sharp bends effortlessly. Y. Li and co-workers begin their review, 2400070, with an exploration of the fundamental properties of the waveguide ENZ media and then introduce the design principles of different ENZ-based electromagnetic devices. The review concludes with the challenges and potential development directions encountered by ENZ media in the realm of electromagnetic applications.