论运动学复杂等离子体流中朗缪尔模式的渐近持续性

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astrophysics and Space Science Pub Date : 2024-08-27 DOI:10.1007/s10509-024-04355-x
Ketevan Arabuli, Andria Rogava, Stefaan Poedts
{"title":"论运动学复杂等离子体流中朗缪尔模式的渐近持续性","authors":"Ketevan Arabuli,&nbsp;Andria Rogava,&nbsp;Stefaan Poedts","doi":"10.1007/s10509-024-04355-x","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamics of Langmuir modes, waves (LW), and shear Langmuir vortices (SLV) are studied in kinematically complex astrophysical plasma flows. It is found that they exhibit several peculiar, velocity shear-induced, <i>asymptotically persistent</i> phenomena, including efficient energy exchange with the background flow and various kinds of instabilities, leading to their exponential growth and echoing solutions with persistent wave-vortex-wave conversions. There is a remarkable similarity between these phenomena and those happening with compressible acoustic modes. The relevance and possible importance of these phenomena for different types of astrophysical plasma flow patterns with kinematic complexity are discussed. In particular, we argue that these physical processes may account for the persistent appearance of plasma oscillations in the heliosphere and interstellar plasma flows. In particular, we believe that the kinematically complex motion of plasma may naturally lead to the asymptotically persistent appearance of Langmuir modes that are born, grown, fed, sustained and maintained by these flows.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the asymptotic persistence of Langmuir modes in kinematically complex plasma flows\",\"authors\":\"Ketevan Arabuli,&nbsp;Andria Rogava,&nbsp;Stefaan Poedts\",\"doi\":\"10.1007/s10509-024-04355-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamics of Langmuir modes, waves (LW), and shear Langmuir vortices (SLV) are studied in kinematically complex astrophysical plasma flows. It is found that they exhibit several peculiar, velocity shear-induced, <i>asymptotically persistent</i> phenomena, including efficient energy exchange with the background flow and various kinds of instabilities, leading to their exponential growth and echoing solutions with persistent wave-vortex-wave conversions. There is a remarkable similarity between these phenomena and those happening with compressible acoustic modes. The relevance and possible importance of these phenomena for different types of astrophysical plasma flow patterns with kinematic complexity are discussed. In particular, we argue that these physical processes may account for the persistent appearance of plasma oscillations in the heliosphere and interstellar plasma flows. In particular, we believe that the kinematically complex motion of plasma may naturally lead to the asymptotically persistent appearance of Langmuir modes that are born, grown, fed, sustained and maintained by these flows.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"369 8\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04355-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04355-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在运动学复杂的天体物理等离子体流中研究了朗缪尔模式、波(LW)和剪切朗缪尔涡旋(SLV)的动力学。研究发现,它们表现出几种奇特的、由速度剪切力引起的、渐近持久的现象,包括与背景流的有效能量交换和各种不稳定性,从而导致它们的指数增长和具有持久波-涡-波转换的回波解。这些现象与发生在可压缩声学模式中的现象非常相似。我们讨论了这些现象对于具有运动学复杂性的不同类型天体物理等离子体流动模式的相关性和可能的重要性。特别是,我们认为这些物理过程可能是日光层和星际等离子体流中等离子体振荡持续出现的原因。特别是,我们认为等离子体运动学上的复杂运动可能会自然地导致兰缪尔模式的渐进持续出现,这些模式由等离子体流产生、成长、喂养、维持和保持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the asymptotic persistence of Langmuir modes in kinematically complex plasma flows

The dynamics of Langmuir modes, waves (LW), and shear Langmuir vortices (SLV) are studied in kinematically complex astrophysical plasma flows. It is found that they exhibit several peculiar, velocity shear-induced, asymptotically persistent phenomena, including efficient energy exchange with the background flow and various kinds of instabilities, leading to their exponential growth and echoing solutions with persistent wave-vortex-wave conversions. There is a remarkable similarity between these phenomena and those happening with compressible acoustic modes. The relevance and possible importance of these phenomena for different types of astrophysical plasma flow patterns with kinematic complexity are discussed. In particular, we argue that these physical processes may account for the persistent appearance of plasma oscillations in the heliosphere and interstellar plasma flows. In particular, we believe that the kinematically complex motion of plasma may naturally lead to the asymptotically persistent appearance of Langmuir modes that are born, grown, fed, sustained and maintained by these flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
期刊最新文献
Turbulence and chaotic structure generated by nonlinear kinetic Alfvén waves near magnetic null points in solar corona Images in axially symmetric gravitational lenses from elliptical sources: the elimination method Following the tidal trail: a history of modeling the Magellanic Stream Investigation of non-substorm Pi2 magnetic pulsation during solar flare event Resolved stellar populations as a key to unlocking the formation and evolution of galaxies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1