{"title":"PSR J1514-4834的次脉冲漂移","authors":"Qingying Li, Shijun Dang, Lunhua Shang, Habtamu Menberu Tedila, Xin Xu, Wei Li, Jie Tian, Yanqing Cai, Zhixiang Yu, Chenbin Wu","doi":"10.1007/s10509-024-04352-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we report the detailed observation of the drift subpulse behavior of PSR J1514–4834 at a central frequency of 1369 MHz using the Parkes 64-m radio telescope. We have found that individual pulses of this pulsar exhibit distinct modulation behaviors for different profile components. The leading and middle components display periodic amplitude modulation with a period of <span>\\(\\mathrm{P}_{3}=37.5\\pm 0.8\\, \\mathrm{P}\\)</span>, and a drifting sub-pulse phenomenon is detected in the phase region of trailing component with the measured drifting periods <span>\\(\\mathrm{P}_{2}=7.0\\pm 0.4\\,\\mathrm{P}\\)</span> and <span>\\(\\mathrm{P}_{3}=37.5\\pm 0.8\\, \\mathrm{P}\\)</span>. Additionally, it was observed that the leading and trailing components of the pulsar have a clear correlation, the middle and trailing components have a clear anti-correlation, and there is no apparent correlation between the leading and middle components. Moreover, this pulsar deviates from the range of most amplitude-modulated pulsars in the <span>\\(\\dot{\\mathrm{E}}-\\mathrm{P}_{3}\\)</span> diagram, but it still falls within the category of subpulse drifting. PSR J1514–4834 exhibits periodic emission modulation and sub-pulse drifting simultaneously in different profile components, which is difficult to understand with the traditional carousel model. Our observational results will provide new observation evidence for theoretical studies of single-pulse emission mechanisms in pulsars.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subpulse drifting of PSR J1514–4834\",\"authors\":\"Qingying Li, Shijun Dang, Lunhua Shang, Habtamu Menberu Tedila, Xin Xu, Wei Li, Jie Tian, Yanqing Cai, Zhixiang Yu, Chenbin Wu\",\"doi\":\"10.1007/s10509-024-04352-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we report the detailed observation of the drift subpulse behavior of PSR J1514–4834 at a central frequency of 1369 MHz using the Parkes 64-m radio telescope. We have found that individual pulses of this pulsar exhibit distinct modulation behaviors for different profile components. The leading and middle components display periodic amplitude modulation with a period of <span>\\\\(\\\\mathrm{P}_{3}=37.5\\\\pm 0.8\\\\, \\\\mathrm{P}\\\\)</span>, and a drifting sub-pulse phenomenon is detected in the phase region of trailing component with the measured drifting periods <span>\\\\(\\\\mathrm{P}_{2}=7.0\\\\pm 0.4\\\\,\\\\mathrm{P}\\\\)</span> and <span>\\\\(\\\\mathrm{P}_{3}=37.5\\\\pm 0.8\\\\, \\\\mathrm{P}\\\\)</span>. Additionally, it was observed that the leading and trailing components of the pulsar have a clear correlation, the middle and trailing components have a clear anti-correlation, and there is no apparent correlation between the leading and middle components. Moreover, this pulsar deviates from the range of most amplitude-modulated pulsars in the <span>\\\\(\\\\dot{\\\\mathrm{E}}-\\\\mathrm{P}_{3}\\\\)</span> diagram, but it still falls within the category of subpulse drifting. PSR J1514–4834 exhibits periodic emission modulation and sub-pulse drifting simultaneously in different profile components, which is difficult to understand with the traditional carousel model. Our observational results will provide new observation evidence for theoretical studies of single-pulse emission mechanisms in pulsars.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"369 8\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04352-0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04352-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
In this paper, we report the detailed observation of the drift subpulse behavior of PSR J1514–4834 at a central frequency of 1369 MHz using the Parkes 64-m radio telescope. We have found that individual pulses of this pulsar exhibit distinct modulation behaviors for different profile components. The leading and middle components display periodic amplitude modulation with a period of \(\mathrm{P}_{3}=37.5\pm 0.8\, \mathrm{P}\), and a drifting sub-pulse phenomenon is detected in the phase region of trailing component with the measured drifting periods \(\mathrm{P}_{2}=7.0\pm 0.4\,\mathrm{P}\) and \(\mathrm{P}_{3}=37.5\pm 0.8\, \mathrm{P}\). Additionally, it was observed that the leading and trailing components of the pulsar have a clear correlation, the middle and trailing components have a clear anti-correlation, and there is no apparent correlation between the leading and middle components. Moreover, this pulsar deviates from the range of most amplitude-modulated pulsars in the \(\dot{\mathrm{E}}-\mathrm{P}_{3}\) diagram, but it still falls within the category of subpulse drifting. PSR J1514–4834 exhibits periodic emission modulation and sub-pulse drifting simultaneously in different profile components, which is difficult to understand with the traditional carousel model. Our observational results will provide new observation evidence for theoretical studies of single-pulse emission mechanisms in pulsars.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.