近红外区域的齿形波导驱动可调谐带挡等离子滤波器

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-09-09 DOI:10.1007/s11664-024-11410-4
Ghasem KhosroBeygi, Mohammad Reza Jafari, Mehran Shahmansouri
{"title":"近红外区域的齿形波导驱动可调谐带挡等离子滤波器","authors":"Ghasem KhosroBeygi, Mohammad Reza Jafari, Mehran Shahmansouri","doi":"10.1007/s11664-024-11410-4","DOIUrl":null,"url":null,"abstract":"<p>A tunable plasmonic filter in the near-infrared range is being investigated using the finite element numerical method (FEM). The filter structure consists of a serrated dielectric layer, which includes an air layer and silica teeth sandwiched between two metal layers. A numerical analysis shows that it is possible to adjust the band-stop amplitude, intensity, and band-pass width by changing the geometrical parameters. The proposed structure is expected to be used as an essential component of photonics devices due to its ability to confine light in the sub-wavelength region.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"10 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teeth-Shaped Waveguide-Driven Tunable Band-Stop Plasmonic Filter in the Near-Infrared Region\",\"authors\":\"Ghasem KhosroBeygi, Mohammad Reza Jafari, Mehran Shahmansouri\",\"doi\":\"10.1007/s11664-024-11410-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A tunable plasmonic filter in the near-infrared range is being investigated using the finite element numerical method (FEM). The filter structure consists of a serrated dielectric layer, which includes an air layer and silica teeth sandwiched between two metal layers. A numerical analysis shows that it is possible to adjust the band-stop amplitude, intensity, and band-pass width by changing the geometrical parameters. The proposed structure is expected to be used as an essential component of photonics devices due to its ability to confine light in the sub-wavelength region.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11410-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11410-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

目前正在使用有限元数值法(FEM)研究一种近红外范围的可调谐等离子滤波器。滤波器结构由锯齿状介电层组成,其中包括夹在两层金属之间的空气层和硅齿。数值分析表明,可以通过改变几何参数来调整带挡振幅、强度和带通宽度。由于这种结构能够将光限制在亚波长区域,因此有望成为光子器件的重要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Teeth-Shaped Waveguide-Driven Tunable Band-Stop Plasmonic Filter in the Near-Infrared Region

A tunable plasmonic filter in the near-infrared range is being investigated using the finite element numerical method (FEM). The filter structure consists of a serrated dielectric layer, which includes an air layer and silica teeth sandwiched between two metal layers. A numerical analysis shows that it is possible to adjust the band-stop amplitude, intensity, and band-pass width by changing the geometrical parameters. The proposed structure is expected to be used as an essential component of photonics devices due to its ability to confine light in the sub-wavelength region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
Factors Influencing Standard PID Test and Anti-PID Performance of Ga-Doped PERC Mono-Facial Photovoltaic Modules Enhanced Microwave Magnetic and Dielectric Properties of YBiIG Ferrite by Ca-Zr Co-substitution Structural, Optical, and Magnetic Studies of Nickel-Doped β-Ga2O3 Monoclinic and Spinel Polycrystalline Powders Effect of Epoxy Material Viscosity and Gold Wire Configuration on Light-Emitting Diode Encapsulation Process Synthesis and Characterization of Sn-Doped CuO Thin Films for Gas Sensor Toward H2S Gas Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1