Zhaohe Guo, Xueyao Mo, Yan Xu, Xuena Xu, Liluo Shi, Hongri Wan, Limei Sun, Wenchang Zhuang, Ming Song
{"title":"甘氨酸作为有利于锌沉积的双功能电解质添加剂","authors":"Zhaohe Guo, Xueyao Mo, Yan Xu, Xuena Xu, Liluo Shi, Hongri Wan, Limei Sun, Wenchang Zhuang, Ming Song","doi":"10.1007/s11664-024-11397-y","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries (ZIBs) with advantages of low cost, high safety, and eco-friendliness hold immense potential as large-scale energy storage devices. Nevertheless, the uncontrollable side reactions and Zn dendrites severely compromise the reversibility and stability of zinc anodes, hindering the practical application of ZIBs. In this study, glycine is introduced as a bi-functional additive into the ZnSO<sub>4</sub> electrolyte to address these challenges. Experimental results and theoretical calculations demonstrate that the glycine can effectively modulate the solvation structure of Zn<sup>2+</sup>, thereby suppressing the hydrogen evolution reaction (HER) and the formation of by-products. Additionally, glycine molecules preferentially adsorb onto the zinc anode, altering the interface between the Zn anode and the electrolyte. This increases the nucleation overpotential and inhibits the 2D diffusion of Zn<sup>2+</sup>, promoting the homogeneous deposition of Zn. As a result, the Zn||Zn symmetric cell with glycine additive displays a stable cycling performance for over 1500 h at 5 mA cm<sup>−2</sup> and 1 mA h cm<sup>−2</sup>, and the Zn||Cu asymmetric cell exhibits a reversible plating/stripping process with the high stable coulombic efficiency (CE) of 98.4% over 600 cycles. This study offers a low-cost, efficient, and environmentally benign electrolyte additive for favorable Zn deposition.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"34 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycine as a Bi-functional Electrolyte Additive for Favorable Zn Deposition\",\"authors\":\"Zhaohe Guo, Xueyao Mo, Yan Xu, Xuena Xu, Liluo Shi, Hongri Wan, Limei Sun, Wenchang Zhuang, Ming Song\",\"doi\":\"10.1007/s11664-024-11397-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aqueous zinc-ion batteries (ZIBs) with advantages of low cost, high safety, and eco-friendliness hold immense potential as large-scale energy storage devices. Nevertheless, the uncontrollable side reactions and Zn dendrites severely compromise the reversibility and stability of zinc anodes, hindering the practical application of ZIBs. In this study, glycine is introduced as a bi-functional additive into the ZnSO<sub>4</sub> electrolyte to address these challenges. Experimental results and theoretical calculations demonstrate that the glycine can effectively modulate the solvation structure of Zn<sup>2+</sup>, thereby suppressing the hydrogen evolution reaction (HER) and the formation of by-products. Additionally, glycine molecules preferentially adsorb onto the zinc anode, altering the interface between the Zn anode and the electrolyte. This increases the nucleation overpotential and inhibits the 2D diffusion of Zn<sup>2+</sup>, promoting the homogeneous deposition of Zn. As a result, the Zn||Zn symmetric cell with glycine additive displays a stable cycling performance for over 1500 h at 5 mA cm<sup>−2</sup> and 1 mA h cm<sup>−2</sup>, and the Zn||Cu asymmetric cell exhibits a reversible plating/stripping process with the high stable coulombic efficiency (CE) of 98.4% over 600 cycles. This study offers a low-cost, efficient, and environmentally benign electrolyte additive for favorable Zn deposition.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11397-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11397-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
锌离子水电池(ZIBs)具有低成本、高安全性和环保性等优点,作为大规模储能设备具有巨大潜力。然而,不可控的副反应和锌枝晶严重影响了锌阳极的可逆性和稳定性,阻碍了锌离子电池的实际应用。在本研究中,甘氨酸作为一种双功能添加剂被引入到 ZnSO4 电解质中,以应对这些挑战。实验结果和理论计算证明,甘氨酸能有效调节 Zn2+ 的溶解结构,从而抑制氢进化反应(HER)和副产物的形成。此外,甘氨酸分子会优先吸附在锌阳极上,从而改变锌阳极与电解质之间的界面。这增加了成核过电势,抑制了 Zn2+ 的二维扩散,促进了锌的均匀沉积。因此,使用甘氨酸添加剂的 Zn||Zn 对称电池在 5 mA cm-2 和 1 mA h cm-2 条件下可稳定循环超过 1500 小时;Zn||Cu 不对称电池在 600 次循环中表现出可逆的电镀/剥离过程和 98.4% 的高稳定库仑效率 (CE)。这项研究提供了一种低成本、高效率、对环境无害的电解质添加剂,有利于锌的沉积。
Glycine as a Bi-functional Electrolyte Additive for Favorable Zn Deposition
Aqueous zinc-ion batteries (ZIBs) with advantages of low cost, high safety, and eco-friendliness hold immense potential as large-scale energy storage devices. Nevertheless, the uncontrollable side reactions and Zn dendrites severely compromise the reversibility and stability of zinc anodes, hindering the practical application of ZIBs. In this study, glycine is introduced as a bi-functional additive into the ZnSO4 electrolyte to address these challenges. Experimental results and theoretical calculations demonstrate that the glycine can effectively modulate the solvation structure of Zn2+, thereby suppressing the hydrogen evolution reaction (HER) and the formation of by-products. Additionally, glycine molecules preferentially adsorb onto the zinc anode, altering the interface between the Zn anode and the electrolyte. This increases the nucleation overpotential and inhibits the 2D diffusion of Zn2+, promoting the homogeneous deposition of Zn. As a result, the Zn||Zn symmetric cell with glycine additive displays a stable cycling performance for over 1500 h at 5 mA cm−2 and 1 mA h cm−2, and the Zn||Cu asymmetric cell exhibits a reversible plating/stripping process with the high stable coulombic efficiency (CE) of 98.4% over 600 cycles. This study offers a low-cost, efficient, and environmentally benign electrolyte additive for favorable Zn deposition.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.