Md. Ariful Islam, Md. Mahfuzul Haque, Vidhya Selvanathan, M. Mottakin, D. K. Sarkar, Khurram Joya, Abdulaziz M. Alanazi, Takashi Suemasu, Ishtiaque M Syed, Md. Akhtaruzzaman
{"title":"无铅全无机过氧化物太阳能电池中电荷传输层与不同吸收体之间界面动力学的理论分析","authors":"Md. Ariful Islam, Md. Mahfuzul Haque, Vidhya Selvanathan, M. Mottakin, D. K. Sarkar, Khurram Joya, Abdulaziz M. Alanazi, Takashi Suemasu, Ishtiaque M Syed, Md. Akhtaruzzaman","doi":"10.1007/s11664-024-11372-7","DOIUrl":null,"url":null,"abstract":"<p>Although perovskite solar cells (PSCs) have captured notable interest as a potential candidate for third-generation solar cells, due to their favorable optoelectronic properties, cost-effectiveness, and high efficiency, some issues related to device stability and toxicity of the perovskite (PSK) layer hinders the commercial viability of PSCs. The inherent instability of organic PSK halides and the toxicity of Pb has compelled researchers to focus on developing Pb-free all-inorganic PSCs by replacing the organic species with inorganic (Cs<sup>+</sup>) cations as a safer alternative. In this study, the SCAPS-1D simulator was employed to investigate the cell performances of all-inorganic Pb-free Cs-based PSCs with three different PSK layers (CsGeI<sub>3</sub>, CsSnI<sub>3</sub>, and Cs<sub>2</sub>TiI<sub>6</sub>) individually, where inorganic ZnO and CuSCN were used as the electron transport layer (ETL) and the hole transport layer (HTL), respectively. The Cs<sub>2</sub>TiI<sub>6</sub>-based PSC was found to have the best performance. Then, the defect tolerance level of the PSK layer and the impact of band offset on cell performances were investigated. The optimum values of the conduction band offset (CBO) and the valence band offset (VBO) were found to be 0 eV and between − 0.1 eV and 0 eV, respectively. Moreover, the effect of interface defects at the ETL/PSK and PSK/HTL interfaces on cell performance was also analyzed as a function of CBO and VBO and, for both cases, the interface defect tolerance limit was recorded as 10<sup>16</sup> cm<sup>−2</sup>. This study observed a high rate of recombination for negative values of CBO and VBO at the interfaces. Thus, these findings will guide researchers in developing high-performance PSCs with suitable inorganic Pb-free perovskite and charge transport layers.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Analysis on Interfacial Dynamics Between Charge Transport Layer and Different Absorbers in Pb-free All Inorganic Perovskites Solar Cells\",\"authors\":\"Md. Ariful Islam, Md. Mahfuzul Haque, Vidhya Selvanathan, M. Mottakin, D. K. Sarkar, Khurram Joya, Abdulaziz M. Alanazi, Takashi Suemasu, Ishtiaque M Syed, Md. Akhtaruzzaman\",\"doi\":\"10.1007/s11664-024-11372-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although perovskite solar cells (PSCs) have captured notable interest as a potential candidate for third-generation solar cells, due to their favorable optoelectronic properties, cost-effectiveness, and high efficiency, some issues related to device stability and toxicity of the perovskite (PSK) layer hinders the commercial viability of PSCs. The inherent instability of organic PSK halides and the toxicity of Pb has compelled researchers to focus on developing Pb-free all-inorganic PSCs by replacing the organic species with inorganic (Cs<sup>+</sup>) cations as a safer alternative. In this study, the SCAPS-1D simulator was employed to investigate the cell performances of all-inorganic Pb-free Cs-based PSCs with three different PSK layers (CsGeI<sub>3</sub>, CsSnI<sub>3</sub>, and Cs<sub>2</sub>TiI<sub>6</sub>) individually, where inorganic ZnO and CuSCN were used as the electron transport layer (ETL) and the hole transport layer (HTL), respectively. The Cs<sub>2</sub>TiI<sub>6</sub>-based PSC was found to have the best performance. Then, the defect tolerance level of the PSK layer and the impact of band offset on cell performances were investigated. The optimum values of the conduction band offset (CBO) and the valence band offset (VBO) were found to be 0 eV and between − 0.1 eV and 0 eV, respectively. Moreover, the effect of interface defects at the ETL/PSK and PSK/HTL interfaces on cell performance was also analyzed as a function of CBO and VBO and, for both cases, the interface defect tolerance limit was recorded as 10<sup>16</sup> cm<sup>−2</sup>. This study observed a high rate of recombination for negative values of CBO and VBO at the interfaces. Thus, these findings will guide researchers in developing high-performance PSCs with suitable inorganic Pb-free perovskite and charge transport layers.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11372-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11372-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Theoretical Analysis on Interfacial Dynamics Between Charge Transport Layer and Different Absorbers in Pb-free All Inorganic Perovskites Solar Cells
Although perovskite solar cells (PSCs) have captured notable interest as a potential candidate for third-generation solar cells, due to their favorable optoelectronic properties, cost-effectiveness, and high efficiency, some issues related to device stability and toxicity of the perovskite (PSK) layer hinders the commercial viability of PSCs. The inherent instability of organic PSK halides and the toxicity of Pb has compelled researchers to focus on developing Pb-free all-inorganic PSCs by replacing the organic species with inorganic (Cs+) cations as a safer alternative. In this study, the SCAPS-1D simulator was employed to investigate the cell performances of all-inorganic Pb-free Cs-based PSCs with three different PSK layers (CsGeI3, CsSnI3, and Cs2TiI6) individually, where inorganic ZnO and CuSCN were used as the electron transport layer (ETL) and the hole transport layer (HTL), respectively. The Cs2TiI6-based PSC was found to have the best performance. Then, the defect tolerance level of the PSK layer and the impact of band offset on cell performances were investigated. The optimum values of the conduction band offset (CBO) and the valence band offset (VBO) were found to be 0 eV and between − 0.1 eV and 0 eV, respectively. Moreover, the effect of interface defects at the ETL/PSK and PSK/HTL interfaces on cell performance was also analyzed as a function of CBO and VBO and, for both cases, the interface defect tolerance limit was recorded as 1016 cm−2. This study observed a high rate of recombination for negative values of CBO and VBO at the interfaces. Thus, these findings will guide researchers in developing high-performance PSCs with suitable inorganic Pb-free perovskite and charge transport layers.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.