基于 WSe2/rGO 混合结构的光电化学光电探测器性能增强

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-08-30 DOI:10.1007/s11664-024-11385-2
Zhuoqiao Xie, Ruiyang Yu, Zongyu Huang, Hui Qiao, Xiang Qi
{"title":"基于 WSe2/rGO 混合结构的光电化学光电探测器性能增强","authors":"Zhuoqiao Xie, Ruiyang Yu, Zongyu Huang, Hui Qiao, Xiang Qi","doi":"10.1007/s11664-024-11385-2","DOIUrl":null,"url":null,"abstract":"<p>Efficient photoelectrochemical photodetectors based on WSe<sub>2</sub>/rGO have been fabricated using an annealing process. The initial performance enhancement of these devices was primarily attributed to the improved bandgap structure of WSe<sub>2</sub> and the high carrier mobility of rGO, which facilitated an efficient transition of valence band electrons to the conduction band. Upon this understanding, a comparison between bulk WSe<sub>2</sub> and WSe<sub>2</sub> nanosheets (WSe<sub>2</sub> NSs) was conducted. It was found that, at a bias voltage of 0.6 V, the photocurrent density of WSe<sub>2</sub> NSs devices was 76% higher than that of similar bulk WSe<sub>2</sub> devices, reaching 0.044 <i>μ</i>A/cm<sup>2</sup>. Owing to the significant advantages of rGO, extensive testing of various WSe<sub>2</sub> to rGO ratios was performed, identifying the precise composition that optimized photoelectric performance. Notably, under conditions of 0.5 M Na<sub>2</sub>SO<sub>4</sub> electrolyte, 120 mW/cm<sup>2</sup> irradiance, and 0.6 V bias potential, the devices achieved a photocurrent density of 0.64 <i>μ</i>A/cm<sup>2</sup>, which is approximately 25.72 times higher than that of bulk WSe<sub>2</sub> and 14.61 times more than WSe<sub>2</sub> NSs. Moreover, the photoresponse trended upward with increasing irradiation intensity. Specifically, when the irradiation intensity was increased to 160 mW/cm<sup>2</sup> and the bias voltage was raised from 0 V to 0.6 V, the photoresponsivity increased by 5.8 times, from 1 <i>μ</i>A/W to 5.8 <i>μ</i>A/W. The photodetectors constructed using the optimal WSe<sub>2</sub>/rGO ratio exhibited no significant performance degradation during a 4000-s cyclic on/off test, demonstrating their robustness under operational conditions. This study highlights the substantial potential of WSe<sub>2</sub>/rGO hybrids in enhancing the performance of photoelectrochemical photodetectors.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"2016 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoelectrochemical Photodetectors Based on WSe2/rGO Hybrid Structure with Enhanced Performance\",\"authors\":\"Zhuoqiao Xie, Ruiyang Yu, Zongyu Huang, Hui Qiao, Xiang Qi\",\"doi\":\"10.1007/s11664-024-11385-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient photoelectrochemical photodetectors based on WSe<sub>2</sub>/rGO have been fabricated using an annealing process. The initial performance enhancement of these devices was primarily attributed to the improved bandgap structure of WSe<sub>2</sub> and the high carrier mobility of rGO, which facilitated an efficient transition of valence band electrons to the conduction band. Upon this understanding, a comparison between bulk WSe<sub>2</sub> and WSe<sub>2</sub> nanosheets (WSe<sub>2</sub> NSs) was conducted. It was found that, at a bias voltage of 0.6 V, the photocurrent density of WSe<sub>2</sub> NSs devices was 76% higher than that of similar bulk WSe<sub>2</sub> devices, reaching 0.044 <i>μ</i>A/cm<sup>2</sup>. Owing to the significant advantages of rGO, extensive testing of various WSe<sub>2</sub> to rGO ratios was performed, identifying the precise composition that optimized photoelectric performance. Notably, under conditions of 0.5 M Na<sub>2</sub>SO<sub>4</sub> electrolyte, 120 mW/cm<sup>2</sup> irradiance, and 0.6 V bias potential, the devices achieved a photocurrent density of 0.64 <i>μ</i>A/cm<sup>2</sup>, which is approximately 25.72 times higher than that of bulk WSe<sub>2</sub> and 14.61 times more than WSe<sub>2</sub> NSs. Moreover, the photoresponse trended upward with increasing irradiation intensity. Specifically, when the irradiation intensity was increased to 160 mW/cm<sup>2</sup> and the bias voltage was raised from 0 V to 0.6 V, the photoresponsivity increased by 5.8 times, from 1 <i>μ</i>A/W to 5.8 <i>μ</i>A/W. The photodetectors constructed using the optimal WSe<sub>2</sub>/rGO ratio exhibited no significant performance degradation during a 4000-s cyclic on/off test, demonstrating their robustness under operational conditions. This study highlights the substantial potential of WSe<sub>2</sub>/rGO hybrids in enhancing the performance of photoelectrochemical photodetectors.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11385-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11385-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

利用退火工艺制造出了基于 WSe2/rGO 的高效光电化学光电探测器。这些器件最初的性能提升主要归功于 WSe2 带隙结构的改善和 rGO 的高载流子迁移率,这促进了价带电子向导带的有效过渡。基于这一认识,我们对块状 WSe2 和 WSe2 纳米片(WSe2 NSs)进行了比较。结果发现,在 0.6 V 的偏置电压下,WSe2 NSs 器件的光电流密度比类似的块状 WSe2 器件高出 76%,达到 0.044 μA/cm2。由于 rGO 的显著优势,我们对各种 WSe2 与 rGO 的比例进行了广泛测试,确定了能优化光电性能的精确成分。值得注意的是,在 0.5 M Na2SO4 电解液、120 mW/cm2 辐照度和 0.6 V 偏置电位条件下,该器件的光电流密度达到 0.64 μA/cm2,是块状 WSe2 的约 25.72 倍,是 WSe2 NSs 的 14.61 倍。此外,光响应随辐照强度的增加而呈上升趋势。具体来说,当辐照强度增加到 160 mW/cm2 并将偏置电压从 0 V 提高到 0.6 V 时,光致反射率增加了 5.8 倍,从 1 μA/W 增加到 5.8 μA/W。使用最佳 WSe2/rGO 比率构建的光电探测器在 4000 秒的循环开/关测试中没有出现明显的性能衰减,证明了其在工作条件下的稳健性。这项研究凸显了 WSe2/rGO 混合材料在提高光电化学光电探测器性能方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photoelectrochemical Photodetectors Based on WSe2/rGO Hybrid Structure with Enhanced Performance

Efficient photoelectrochemical photodetectors based on WSe2/rGO have been fabricated using an annealing process. The initial performance enhancement of these devices was primarily attributed to the improved bandgap structure of WSe2 and the high carrier mobility of rGO, which facilitated an efficient transition of valence band electrons to the conduction band. Upon this understanding, a comparison between bulk WSe2 and WSe2 nanosheets (WSe2 NSs) was conducted. It was found that, at a bias voltage of 0.6 V, the photocurrent density of WSe2 NSs devices was 76% higher than that of similar bulk WSe2 devices, reaching 0.044 μA/cm2. Owing to the significant advantages of rGO, extensive testing of various WSe2 to rGO ratios was performed, identifying the precise composition that optimized photoelectric performance. Notably, under conditions of 0.5 M Na2SO4 electrolyte, 120 mW/cm2 irradiance, and 0.6 V bias potential, the devices achieved a photocurrent density of 0.64 μA/cm2, which is approximately 25.72 times higher than that of bulk WSe2 and 14.61 times more than WSe2 NSs. Moreover, the photoresponse trended upward with increasing irradiation intensity. Specifically, when the irradiation intensity was increased to 160 mW/cm2 and the bias voltage was raised from 0 V to 0.6 V, the photoresponsivity increased by 5.8 times, from 1 μA/W to 5.8 μA/W. The photodetectors constructed using the optimal WSe2/rGO ratio exhibited no significant performance degradation during a 4000-s cyclic on/off test, demonstrating their robustness under operational conditions. This study highlights the substantial potential of WSe2/rGO hybrids in enhancing the performance of photoelectrochemical photodetectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
Factors Influencing Standard PID Test and Anti-PID Performance of Ga-Doped PERC Mono-Facial Photovoltaic Modules Enhanced Microwave Magnetic and Dielectric Properties of YBiIG Ferrite by Ca-Zr Co-substitution Structural, Optical, and Magnetic Studies of Nickel-Doped β-Ga2O3 Monoclinic and Spinel Polycrystalline Powders Effect of Epoxy Material Viscosity and Gold Wire Configuration on Light-Emitting Diode Encapsulation Process Synthesis and Characterization of Sn-Doped CuO Thin Films for Gas Sensor Toward H2S Gas Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1