{"title":"用于废水处理的 α-Fe2O3/ZnO 纳米复合材料的紫外线辐射光催化活性","authors":"Sonia, Harita Kumari, Monica, Sourabh Sharma, Reenu, Rakesh Kumar, Suman, Surjeet Chahal, Suresh Kumar, Parmod Kumar, Ashok Kumar","doi":"10.1007/s11664-024-11361-w","DOIUrl":null,"url":null,"abstract":"<p>This work demonstrates the successful synthesis of pure <i>α</i>-Fe<sub>2</sub>O<sub>3</sub>, pure ZnO, and <i>α</i>-Fe<sub>2</sub>O<sub>3</sub>/ZnO nanocomposites with weight ratios of 1:1, 1:2, 1:3, and 1:4 by an efficient hydrothermal method for wastewater treatment. The structural, morphological, optical, and magnetic properties of the synthesized samples were characterized by x-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), ultraviolet–visible (UV–Vis) spectroscopy, and vibrating-sample magnetometry (VSM), respectively. The XRD pattern confirmed the successful formation of the synthesized samples. Particle size in the range of 30–36 nm was calculated for the nanocomposite using HR-TEM. UV–Vis spectroscopy was used to calculate the optical bandgap of the synthesized nanocomposites, which varied from 1.96 eV (FZ11) to 2.27 eV (FZ14). This difference was explained by the introduction of ZnO, which is a wide-bandgap semiconductor. The value of magnetization decreased from 0.37 emu/g to 0.04 emu/g as the content of ZnO increased. The <i>α</i>-Fe<sub>2</sub>O<sub>3</sub>/ZnO nanocomposite with a weight ratio of 1:4 showed 85% photocatalytic degradation of methylene blue (MB) dye under UV light illumination with synchronized extraction for 105 min.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"107 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UV-Irradiated Photocatalytic Activity of α-Fe2O3/ZnO Nanocomposites for Wastewater Treatment\",\"authors\":\"Sonia, Harita Kumari, Monica, Sourabh Sharma, Reenu, Rakesh Kumar, Suman, Surjeet Chahal, Suresh Kumar, Parmod Kumar, Ashok Kumar\",\"doi\":\"10.1007/s11664-024-11361-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work demonstrates the successful synthesis of pure <i>α</i>-Fe<sub>2</sub>O<sub>3</sub>, pure ZnO, and <i>α</i>-Fe<sub>2</sub>O<sub>3</sub>/ZnO nanocomposites with weight ratios of 1:1, 1:2, 1:3, and 1:4 by an efficient hydrothermal method for wastewater treatment. The structural, morphological, optical, and magnetic properties of the synthesized samples were characterized by x-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), ultraviolet–visible (UV–Vis) spectroscopy, and vibrating-sample magnetometry (VSM), respectively. The XRD pattern confirmed the successful formation of the synthesized samples. Particle size in the range of 30–36 nm was calculated for the nanocomposite using HR-TEM. UV–Vis spectroscopy was used to calculate the optical bandgap of the synthesized nanocomposites, which varied from 1.96 eV (FZ11) to 2.27 eV (FZ14). This difference was explained by the introduction of ZnO, which is a wide-bandgap semiconductor. The value of magnetization decreased from 0.37 emu/g to 0.04 emu/g as the content of ZnO increased. The <i>α</i>-Fe<sub>2</sub>O<sub>3</sub>/ZnO nanocomposite with a weight ratio of 1:4 showed 85% photocatalytic degradation of methylene blue (MB) dye under UV light illumination with synchronized extraction for 105 min.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11361-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11361-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
UV-Irradiated Photocatalytic Activity of α-Fe2O3/ZnO Nanocomposites for Wastewater Treatment
This work demonstrates the successful synthesis of pure α-Fe2O3, pure ZnO, and α-Fe2O3/ZnO nanocomposites with weight ratios of 1:1, 1:2, 1:3, and 1:4 by an efficient hydrothermal method for wastewater treatment. The structural, morphological, optical, and magnetic properties of the synthesized samples were characterized by x-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), ultraviolet–visible (UV–Vis) spectroscopy, and vibrating-sample magnetometry (VSM), respectively. The XRD pattern confirmed the successful formation of the synthesized samples. Particle size in the range of 30–36 nm was calculated for the nanocomposite using HR-TEM. UV–Vis spectroscopy was used to calculate the optical bandgap of the synthesized nanocomposites, which varied from 1.96 eV (FZ11) to 2.27 eV (FZ14). This difference was explained by the introduction of ZnO, which is a wide-bandgap semiconductor. The value of magnetization decreased from 0.37 emu/g to 0.04 emu/g as the content of ZnO increased. The α-Fe2O3/ZnO nanocomposite with a weight ratio of 1:4 showed 85% photocatalytic degradation of methylene blue (MB) dye under UV light illumination with synchronized extraction for 105 min.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.