{"title":"利用燃料分配控制调节扰流喷气燃烧器模式转换","authors":"Mithuun Kanapathipillai, Kenneth H. Yu","doi":"10.1016/j.proci.2024.105414","DOIUrl":null,"url":null,"abstract":"Dual-mode scramjets can operate efficiently over a range of flight speeds from moderate supersonic to hypersonic conditions. Depending on the fueling and flight conditions, the combustion mode operates in either a thermally-choked mode or a supersonic combustion mode. Direct-connect experiments were conducted using a laboratory-scale scramjet combustor with hydrogen as fuel, and its combustion mode transition behavior was characterized over various equivalence ratios. It was observed that the combustor became susceptible to combustion instability when mode transition was occurring naturally. To explore the possibility of actively triggering combustion mode transition while alleviating the combustion instability concerns, a new strategy of changing fuel injection distribution was formulated and a series of spatially distributed fuel injection experiments were conducted. The results showed that the critical amount of fueling for mode transition depends on the degree of fuel distribution. Subsequent experiments demonstrated that the combustion mode transition timing could be effectively controlled by scheduling spatial distribution of fuel injection. When fuel was injected at one location, most of heat release was concentrated near the cavity flame-holder, leading to thermal choking at a relatively low equivalence ratio. With distributed fuel injection, heat release became more evenly distributed across the expanding portion of the combustor, effectively delaying the mode transition to a higher equivalence ratio. Through the use of fast-acting solenoid valves, it was shown that changing fuel injection distribution could be used to trigger a timely combustor mode transition while holding the total fuel flow rate unchanged. When mode transition was actively triggered, the entire transition process occurred over a significantly shorter time scale compared to the natural mode transition process. The results indicate that combustion mode transition process could be controlled at the desired timing by actively scheduling fuel injection distribution, with reduced risks of encountering combustion instabilities while transitioning.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"9 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating scramjet combustor mode transition using fuel distribution control\",\"authors\":\"Mithuun Kanapathipillai, Kenneth H. Yu\",\"doi\":\"10.1016/j.proci.2024.105414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual-mode scramjets can operate efficiently over a range of flight speeds from moderate supersonic to hypersonic conditions. Depending on the fueling and flight conditions, the combustion mode operates in either a thermally-choked mode or a supersonic combustion mode. Direct-connect experiments were conducted using a laboratory-scale scramjet combustor with hydrogen as fuel, and its combustion mode transition behavior was characterized over various equivalence ratios. It was observed that the combustor became susceptible to combustion instability when mode transition was occurring naturally. To explore the possibility of actively triggering combustion mode transition while alleviating the combustion instability concerns, a new strategy of changing fuel injection distribution was formulated and a series of spatially distributed fuel injection experiments were conducted. The results showed that the critical amount of fueling for mode transition depends on the degree of fuel distribution. Subsequent experiments demonstrated that the combustion mode transition timing could be effectively controlled by scheduling spatial distribution of fuel injection. When fuel was injected at one location, most of heat release was concentrated near the cavity flame-holder, leading to thermal choking at a relatively low equivalence ratio. With distributed fuel injection, heat release became more evenly distributed across the expanding portion of the combustor, effectively delaying the mode transition to a higher equivalence ratio. Through the use of fast-acting solenoid valves, it was shown that changing fuel injection distribution could be used to trigger a timely combustor mode transition while holding the total fuel flow rate unchanged. When mode transition was actively triggered, the entire transition process occurred over a significantly shorter time scale compared to the natural mode transition process. The results indicate that combustion mode transition process could be controlled at the desired timing by actively scheduling fuel injection distribution, with reduced risks of encountering combustion instabilities while transitioning.\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.proci.2024.105414\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105414","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Regulating scramjet combustor mode transition using fuel distribution control
Dual-mode scramjets can operate efficiently over a range of flight speeds from moderate supersonic to hypersonic conditions. Depending on the fueling and flight conditions, the combustion mode operates in either a thermally-choked mode or a supersonic combustion mode. Direct-connect experiments were conducted using a laboratory-scale scramjet combustor with hydrogen as fuel, and its combustion mode transition behavior was characterized over various equivalence ratios. It was observed that the combustor became susceptible to combustion instability when mode transition was occurring naturally. To explore the possibility of actively triggering combustion mode transition while alleviating the combustion instability concerns, a new strategy of changing fuel injection distribution was formulated and a series of spatially distributed fuel injection experiments were conducted. The results showed that the critical amount of fueling for mode transition depends on the degree of fuel distribution. Subsequent experiments demonstrated that the combustion mode transition timing could be effectively controlled by scheduling spatial distribution of fuel injection. When fuel was injected at one location, most of heat release was concentrated near the cavity flame-holder, leading to thermal choking at a relatively low equivalence ratio. With distributed fuel injection, heat release became more evenly distributed across the expanding portion of the combustor, effectively delaying the mode transition to a higher equivalence ratio. Through the use of fast-acting solenoid valves, it was shown that changing fuel injection distribution could be used to trigger a timely combustor mode transition while holding the total fuel flow rate unchanged. When mode transition was actively triggered, the entire transition process occurred over a significantly shorter time scale compared to the natural mode transition process. The results indicate that combustion mode transition process could be controlled at the desired timing by actively scheduling fuel injection distribution, with reduced risks of encountering combustion instabilities while transitioning.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.