装饰在金纳米粒子上的基于聚(1,8-二氨基萘)的导电分子印迹聚合物用于控制抗生素释放

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Colloid and Polymer Science Pub Date : 2024-09-07 DOI:10.1007/s00396-024-05314-2
Long Toan Trinh, Huy Le Nguyen, Mai Tuyet Thi Nguyen
{"title":"装饰在金纳米粒子上的基于聚(1,8-二氨基萘)的导电分子印迹聚合物用于控制抗生素释放","authors":"Long Toan Trinh,&nbsp;Huy Le Nguyen,&nbsp;Mai Tuyet Thi Nguyen","doi":"10.1007/s00396-024-05314-2","DOIUrl":null,"url":null,"abstract":"<div><p>The combination of conducting polymer and nanogold represents a cutting-edge approach in the development of efficient drug release control systems, particularly leveraging molecular imprinting technology. In this work, a conductive molecularly imprinted polymer (MIP) was electro-synthesized from 1,8-diaminonaphthalene monomers in the presence of amoxicillin as target molecule on gold nanoparticles (AuNPs). AuNPs play a crucial role in supporting the polymerization process and facilitating the characterization of material properties through various analytical techniques. Furthermore, the conductive MIP facilitates fabrication control through electrochemical parameters, enabling the specific and reversible capture and release of amoxicillin. A comprehensive drug release kinetic study was conducted, revealing a significant departure from the conventional release profile of commercial amoxicillin capsules. While typical capsules release the drug over 1 h, our conductive MIP material demonstrated a substantially prolonged release time, extending up to approximately 8 h. This prolonged-release duration holds promising implications for drug delivery applications, potentially offering improved therapeutic outcomes and patient adherence.</p><h3>Graphic Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 12","pages":"1881 - 1890"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductive molecularly imprinted polymer based on poly(1,8-diaminonaphthalene) decorated on gold nanoparticles for controlled antibiotic release\",\"authors\":\"Long Toan Trinh,&nbsp;Huy Le Nguyen,&nbsp;Mai Tuyet Thi Nguyen\",\"doi\":\"10.1007/s00396-024-05314-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The combination of conducting polymer and nanogold represents a cutting-edge approach in the development of efficient drug release control systems, particularly leveraging molecular imprinting technology. In this work, a conductive molecularly imprinted polymer (MIP) was electro-synthesized from 1,8-diaminonaphthalene monomers in the presence of amoxicillin as target molecule on gold nanoparticles (AuNPs). AuNPs play a crucial role in supporting the polymerization process and facilitating the characterization of material properties through various analytical techniques. Furthermore, the conductive MIP facilitates fabrication control through electrochemical parameters, enabling the specific and reversible capture and release of amoxicillin. A comprehensive drug release kinetic study was conducted, revealing a significant departure from the conventional release profile of commercial amoxicillin capsules. While typical capsules release the drug over 1 h, our conductive MIP material demonstrated a substantially prolonged release time, extending up to approximately 8 h. This prolonged-release duration holds promising implications for drug delivery applications, potentially offering improved therapeutic outcomes and patient adherence.</p><h3>Graphic Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"302 12\",\"pages\":\"1881 - 1890\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-024-05314-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05314-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

导电聚合物与纳米金的结合是开发高效药物释放控制系统的前沿方法,特别是利用分子印迹技术。在这项研究中,以 1,8-二氨基萘单体为原料,以阿莫西林为目标分子,在金纳米粒子(AuNPs)上电合成了导电分子印迹聚合物(MIP)。AuNPs 在支持聚合过程和促进通过各种分析技术表征材料特性方面起着至关重要的作用。此外,导电 MIP 还有助于通过电化学参数进行制造控制,从而实现阿莫西林的特异性和可逆性捕获和释放。研究人员进行了全面的药物释放动力学研究,结果表明阿莫西林胶囊与商用阿莫西林胶囊的传统释放曲线大相径庭。典型的胶囊在 1 小时内释放药物,而我们的导电 MIP 材料则大大延长了药物释放时间,可长达约 8 小时。这种延长释放时间的特性为药物输送应用带来了希望,有可能改善治疗效果和病人的依从性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conductive molecularly imprinted polymer based on poly(1,8-diaminonaphthalene) decorated on gold nanoparticles for controlled antibiotic release

The combination of conducting polymer and nanogold represents a cutting-edge approach in the development of efficient drug release control systems, particularly leveraging molecular imprinting technology. In this work, a conductive molecularly imprinted polymer (MIP) was electro-synthesized from 1,8-diaminonaphthalene monomers in the presence of amoxicillin as target molecule on gold nanoparticles (AuNPs). AuNPs play a crucial role in supporting the polymerization process and facilitating the characterization of material properties through various analytical techniques. Furthermore, the conductive MIP facilitates fabrication control through electrochemical parameters, enabling the specific and reversible capture and release of amoxicillin. A comprehensive drug release kinetic study was conducted, revealing a significant departure from the conventional release profile of commercial amoxicillin capsules. While typical capsules release the drug over 1 h, our conductive MIP material demonstrated a substantially prolonged release time, extending up to approximately 8 h. This prolonged-release duration holds promising implications for drug delivery applications, potentially offering improved therapeutic outcomes and patient adherence.

Graphic Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
期刊最新文献
Cellulose regenerated films obtained from the dissolution of cotton waste in ionic liquid Study on the efficient precipitation of germanium by Fe(OH)3 colloid generated by neutralization precipitation method Study on oil-in-water emulsions stabilized by SiO2 nanoparticles for enhancing oil recovery in harsh reservoirs A comparative experimental work on the drop-weight impact responses of thermoplastic polymers produced by additive manufacturing: combined influence of infill rate, test temperature, and filament material Multicompartment microparticles of SBM triblock terpolymers: Morphological transitions through homopolymer blending
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1