{"title":"DQ-NN 和幽灵路由增强多源和多目的地物联网的源位置隐私性","authors":"Arpitha T., Dharamendra Chouhan, Shreyas J.","doi":"10.1186/s13635-024-00176-1","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) is now an essential component of our day-to-day lives. In any case, the association of various devices presents numerous security challenges in IoT. In some cases, ubiquitous data or traffic may be collected by certain smart devices which threatens the privacy of a source node location. To address this issue, a hybrid DL technique named Deep Q Learning Neural network (DQ-NN) is proposed for the Source Location Privacy (SLP) in IoT networks based on phantom routing. Here, an IoT network with multiple sources and destinations is considered first, and then the phantom node is chosen by analyzing neighbor list, energy, distance, and trust heterogeneity parameters. After that, multiple routes are created from the source node to the sink node via the phantom node. Finally, path selection is performed by the proposed DQ-NN. Moreover, DQ-NN is obtained by merging the Deep Q Learning Network (DQN) and Deep Neural Network (DNN). A simulation environment consisting of 150 nodes is created to study the effectiveness of performance and scalability. The proposed novel DQ-NN outperforms other existing algorithms, by recording a high network lifetime is 111.912, a safety period of 664970.7 m, an energy is 0.034 J, and a distance is 56.594 m.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DQ-NN and phantom routing for enhanced source location privacy for IoT under multiple source and destination\",\"authors\":\"Arpitha T., Dharamendra Chouhan, Shreyas J.\",\"doi\":\"10.1186/s13635-024-00176-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) is now an essential component of our day-to-day lives. In any case, the association of various devices presents numerous security challenges in IoT. In some cases, ubiquitous data or traffic may be collected by certain smart devices which threatens the privacy of a source node location. To address this issue, a hybrid DL technique named Deep Q Learning Neural network (DQ-NN) is proposed for the Source Location Privacy (SLP) in IoT networks based on phantom routing. Here, an IoT network with multiple sources and destinations is considered first, and then the phantom node is chosen by analyzing neighbor list, energy, distance, and trust heterogeneity parameters. After that, multiple routes are created from the source node to the sink node via the phantom node. Finally, path selection is performed by the proposed DQ-NN. Moreover, DQ-NN is obtained by merging the Deep Q Learning Network (DQN) and Deep Neural Network (DNN). A simulation environment consisting of 150 nodes is created to study the effectiveness of performance and scalability. The proposed novel DQ-NN outperforms other existing algorithms, by recording a high network lifetime is 111.912, a safety period of 664970.7 m, an energy is 0.034 J, and a distance is 56.594 m.\",\"PeriodicalId\":46070,\"journal\":{\"name\":\"EURASIP Journal on Information Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13635-024-00176-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-024-00176-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DQ-NN and phantom routing for enhanced source location privacy for IoT under multiple source and destination
The Internet of Things (IoT) is now an essential component of our day-to-day lives. In any case, the association of various devices presents numerous security challenges in IoT. In some cases, ubiquitous data or traffic may be collected by certain smart devices which threatens the privacy of a source node location. To address this issue, a hybrid DL technique named Deep Q Learning Neural network (DQ-NN) is proposed for the Source Location Privacy (SLP) in IoT networks based on phantom routing. Here, an IoT network with multiple sources and destinations is considered first, and then the phantom node is chosen by analyzing neighbor list, energy, distance, and trust heterogeneity parameters. After that, multiple routes are created from the source node to the sink node via the phantom node. Finally, path selection is performed by the proposed DQ-NN. Moreover, DQ-NN is obtained by merging the Deep Q Learning Network (DQN) and Deep Neural Network (DNN). A simulation environment consisting of 150 nodes is created to study the effectiveness of performance and scalability. The proposed novel DQ-NN outperforms other existing algorithms, by recording a high network lifetime is 111.912, a safety period of 664970.7 m, an energy is 0.034 J, and a distance is 56.594 m.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy