Chao-En Jin, Hua-Mei Zhu, Lei Wang, Fan Wang, Ya-Ping Zhu, Shi-Feng Deng, Hui-Min Qi, Lei Du
{"title":"含氰基硅的芳基乙炔树脂及其复合材料的制备与表征:涉及物理界面相互作用和化学交联的双重增强策略","authors":"Chao-En Jin, Hua-Mei Zhu, Lei Wang, Fan Wang, Ya-Ping Zhu, Shi-Feng Deng, Hui-Min Qi, Lei Du","doi":"10.1007/s10118-024-3173-x","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon-containing arylacetylene (PSA) resins have broad application prospects because of their excellent heat resistance. However, improving their mechanical properties and interfacial bonding with reinforcement fibers while maintaining heat resistance is a challenge in engineering applications. Here, poly(diethynylbenzene-methylsilyl-3-benzonitrile) (DEB-CN) and poly(diethynylbenzene-methylsilyl-3,6-diethynylcarbazole-3-benzonitrile) (DEC-CN) were synthesized <i>via</i> an isopropylmagnesium chloride lithium-chloride complex (<i>i</i>-PrMgCl·LiCl), overcoming the compatibility problem between cyano groups and Grignard reagents. The cyano and alkyne groups in the resin underwent cyclization to form pyridine, catalyzed by the -NH- moiety in DEC-CN, resulting in extremely high thermal stability (5% weight loss temperature: 669.3 °C, glass transition temperature >650 °C). The combination of cyano dipole-dipole pairing and hydrogen bonding greatly enhanced the resin-fiber interface properties, while the generated pyridine promoted stress relief in the crosslinked network, substantially improving the mechanical properties of the cyano-silicon-containing arylacetylene resin composites. The flexural strength of quartz fiber cloth/DEC-CN composites was 298.2 MPa at room temperature and 145.9 MPa at 500 °C, corresponding to 84.0% and 127.6% enhancements, respectively, over the cyano-free counterpart. These cyano-silicon-containing arylacetylene resins exhibited a dual reinforcement mechanism involving physical interfacial interactions and chemical crosslinking, achieving a good balance between thermal stability and mechanical properties.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1719 - 1729"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Characterization of Cyano-Silicon-Containing Arylacetylene Resins and Their Composites: Dual Enhancement Strategy Involving Physical Interfacial Interactions and Chemical Crosslinking\",\"authors\":\"Chao-En Jin, Hua-Mei Zhu, Lei Wang, Fan Wang, Ya-Ping Zhu, Shi-Feng Deng, Hui-Min Qi, Lei Du\",\"doi\":\"10.1007/s10118-024-3173-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicon-containing arylacetylene (PSA) resins have broad application prospects because of their excellent heat resistance. However, improving their mechanical properties and interfacial bonding with reinforcement fibers while maintaining heat resistance is a challenge in engineering applications. Here, poly(diethynylbenzene-methylsilyl-3-benzonitrile) (DEB-CN) and poly(diethynylbenzene-methylsilyl-3,6-diethynylcarbazole-3-benzonitrile) (DEC-CN) were synthesized <i>via</i> an isopropylmagnesium chloride lithium-chloride complex (<i>i</i>-PrMgCl·LiCl), overcoming the compatibility problem between cyano groups and Grignard reagents. The cyano and alkyne groups in the resin underwent cyclization to form pyridine, catalyzed by the -NH- moiety in DEC-CN, resulting in extremely high thermal stability (5% weight loss temperature: 669.3 °C, glass transition temperature >650 °C). The combination of cyano dipole-dipole pairing and hydrogen bonding greatly enhanced the resin-fiber interface properties, while the generated pyridine promoted stress relief in the crosslinked network, substantially improving the mechanical properties of the cyano-silicon-containing arylacetylene resin composites. The flexural strength of quartz fiber cloth/DEC-CN composites was 298.2 MPa at room temperature and 145.9 MPa at 500 °C, corresponding to 84.0% and 127.6% enhancements, respectively, over the cyano-free counterpart. These cyano-silicon-containing arylacetylene resins exhibited a dual reinforcement mechanism involving physical interfacial interactions and chemical crosslinking, achieving a good balance between thermal stability and mechanical properties.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 11\",\"pages\":\"1719 - 1729\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3173-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3173-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Preparation and Characterization of Cyano-Silicon-Containing Arylacetylene Resins and Their Composites: Dual Enhancement Strategy Involving Physical Interfacial Interactions and Chemical Crosslinking
Silicon-containing arylacetylene (PSA) resins have broad application prospects because of their excellent heat resistance. However, improving their mechanical properties and interfacial bonding with reinforcement fibers while maintaining heat resistance is a challenge in engineering applications. Here, poly(diethynylbenzene-methylsilyl-3-benzonitrile) (DEB-CN) and poly(diethynylbenzene-methylsilyl-3,6-diethynylcarbazole-3-benzonitrile) (DEC-CN) were synthesized via an isopropylmagnesium chloride lithium-chloride complex (i-PrMgCl·LiCl), overcoming the compatibility problem between cyano groups and Grignard reagents. The cyano and alkyne groups in the resin underwent cyclization to form pyridine, catalyzed by the -NH- moiety in DEC-CN, resulting in extremely high thermal stability (5% weight loss temperature: 669.3 °C, glass transition temperature >650 °C). The combination of cyano dipole-dipole pairing and hydrogen bonding greatly enhanced the resin-fiber interface properties, while the generated pyridine promoted stress relief in the crosslinked network, substantially improving the mechanical properties of the cyano-silicon-containing arylacetylene resin composites. The flexural strength of quartz fiber cloth/DEC-CN composites was 298.2 MPa at room temperature and 145.9 MPa at 500 °C, corresponding to 84.0% and 127.6% enhancements, respectively, over the cyano-free counterpart. These cyano-silicon-containing arylacetylene resins exhibited a dual reinforcement mechanism involving physical interfacial interactions and chemical crosslinking, achieving a good balance between thermal stability and mechanical properties.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.