Xiang-Xi Cui, Li Shang, Zhong-Wen Liu, Zhao-Tie Liu, Jin-Qiang Jiang, Guo Li
{"title":"一种具有光响应形状记忆和可编程吸湿致动功能的复合弹性体","authors":"Xiang-Xi Cui, Li Shang, Zhong-Wen Liu, Zhao-Tie Liu, Jin-Qiang Jiang, Guo Li","doi":"10.1007/s10118-024-3187-4","DOIUrl":null,"url":null,"abstract":"<div><p>Developing hydroscopic actuators with simultaneous high elasticity, shape programmability and tunable actuating behaviors are highly desired but still challenging. In this study, we propose an orthogonal composite design to develop such a material. The developed composite elastomer comprises carboxyl group-grafted polystyrene-block-poly(ethylene-<i>co</i>-butylene)-block-polystyrene (SEBS-<i>g</i>-COOH) as the elastic substrate, and a synthesized azobenzene derivative as the functional filler (Azo12). By surface treatment using acidic and base solutions, the carboxyl groups on the surface can reversibly transform into carboxylate groups, which render the composite tunable hygroscopic actuating functionality. On another aspect, the added filler undergoes <i>trans</i>-to-<i>cis</i> isomerization when exposed to UV light irradiation, leading to liquefaction of the crystalline aggregates formed by Azo12 molecules. The liquefied Azo12 molecules can autonomously resotre their trans form and reform the crystalline structure. This reversible change in crystralline structure is utilized to realize the shape memory property, and 5 wt% of Azo12 addition is adequate for the composite to exhibit photo-responsive shape memory behavior without compromising much of the elasricity. The regualtion of external geometry by shape memory effect is effective in altering the actuating behavior. The proposed method can be extend to designing different composites with the demonstrated functionalities.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1470 - 1478"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Composite Elastomer with Photo-responsive Shape Memory and Programmable Hygroscopic Actuation Functionalities\",\"authors\":\"Xiang-Xi Cui, Li Shang, Zhong-Wen Liu, Zhao-Tie Liu, Jin-Qiang Jiang, Guo Li\",\"doi\":\"10.1007/s10118-024-3187-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing hydroscopic actuators with simultaneous high elasticity, shape programmability and tunable actuating behaviors are highly desired but still challenging. In this study, we propose an orthogonal composite design to develop such a material. The developed composite elastomer comprises carboxyl group-grafted polystyrene-block-poly(ethylene-<i>co</i>-butylene)-block-polystyrene (SEBS-<i>g</i>-COOH) as the elastic substrate, and a synthesized azobenzene derivative as the functional filler (Azo12). By surface treatment using acidic and base solutions, the carboxyl groups on the surface can reversibly transform into carboxylate groups, which render the composite tunable hygroscopic actuating functionality. On another aspect, the added filler undergoes <i>trans</i>-to-<i>cis</i> isomerization when exposed to UV light irradiation, leading to liquefaction of the crystalline aggregates formed by Azo12 molecules. The liquefied Azo12 molecules can autonomously resotre their trans form and reform the crystalline structure. This reversible change in crystralline structure is utilized to realize the shape memory property, and 5 wt% of Azo12 addition is adequate for the composite to exhibit photo-responsive shape memory behavior without compromising much of the elasricity. The regualtion of external geometry by shape memory effect is effective in altering the actuating behavior. The proposed method can be extend to designing different composites with the demonstrated functionalities.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 10\",\"pages\":\"1470 - 1478\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3187-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3187-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
A Composite Elastomer with Photo-responsive Shape Memory and Programmable Hygroscopic Actuation Functionalities
Developing hydroscopic actuators with simultaneous high elasticity, shape programmability and tunable actuating behaviors are highly desired but still challenging. In this study, we propose an orthogonal composite design to develop such a material. The developed composite elastomer comprises carboxyl group-grafted polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene (SEBS-g-COOH) as the elastic substrate, and a synthesized azobenzene derivative as the functional filler (Azo12). By surface treatment using acidic and base solutions, the carboxyl groups on the surface can reversibly transform into carboxylate groups, which render the composite tunable hygroscopic actuating functionality. On another aspect, the added filler undergoes trans-to-cis isomerization when exposed to UV light irradiation, leading to liquefaction of the crystalline aggregates formed by Azo12 molecules. The liquefied Azo12 molecules can autonomously resotre their trans form and reform the crystalline structure. This reversible change in crystralline structure is utilized to realize the shape memory property, and 5 wt% of Azo12 addition is adequate for the composite to exhibit photo-responsive shape memory behavior without compromising much of the elasricity. The regualtion of external geometry by shape memory effect is effective in altering the actuating behavior. The proposed method can be extend to designing different composites with the demonstrated functionalities.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.