{"title":"具有增强机械性能和可调形状记忆的动态交联磷光聚(乙烯醇)-三联吡啶薄膜","authors":"Meng Wei, Wei-Hao Feng, Chen Yu, Zhen-Yi Jiang, Guang-Qiang Yin, Wei Lu, Tao Chen","doi":"10.1007/s10118-024-3189-2","DOIUrl":null,"url":null,"abstract":"<div><p>Achieving versatile room temperature phosphorescence (RTP) materials, especially with tunable mechanical properties and shape memory is attractive and essential but rarely reported. Here, a strategy was reported to realize multi-functional RTP films with multicolor fluorescence, ultralong afterglow, adjustable mechanical properties, and shape memory through the synergistic dynamic interaction of lanthanide (Ln<sup>III</sup>)-terpyridine coordination, borate ester bonds, and hydrogen bondings in a poly(vinyl alcohol) (PVA) matrix. By varying the amount of borax, the mechanical properties of the films could be finely controlled due to the change of crosslinking degree of dynamic borate ester bonds in PVA. The assembly and disassembly of borate ester bonds upon the trigger of borax and acid were applied as reversible linkage to achieve programmable shape memory behavior. In addition, the films displayed both fascinating multicolor fluorescence and ultralong afterglow characteristics due to the presence of Ln<sup>III</sup> doping and confinement of terpyridine in PVA. This study provides a new avenue to impart modulable mechanical strength and shape memory to RTP materials.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1595 - 1601"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Crosslinked Phosphorescent Poly(vinyl alcohol)-Terpyridine Films with Enhanced Mechanical Properties and Tunable Shape Memory\",\"authors\":\"Meng Wei, Wei-Hao Feng, Chen Yu, Zhen-Yi Jiang, Guang-Qiang Yin, Wei Lu, Tao Chen\",\"doi\":\"10.1007/s10118-024-3189-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Achieving versatile room temperature phosphorescence (RTP) materials, especially with tunable mechanical properties and shape memory is attractive and essential but rarely reported. Here, a strategy was reported to realize multi-functional RTP films with multicolor fluorescence, ultralong afterglow, adjustable mechanical properties, and shape memory through the synergistic dynamic interaction of lanthanide (Ln<sup>III</sup>)-terpyridine coordination, borate ester bonds, and hydrogen bondings in a poly(vinyl alcohol) (PVA) matrix. By varying the amount of borax, the mechanical properties of the films could be finely controlled due to the change of crosslinking degree of dynamic borate ester bonds in PVA. The assembly and disassembly of borate ester bonds upon the trigger of borax and acid were applied as reversible linkage to achieve programmable shape memory behavior. In addition, the films displayed both fascinating multicolor fluorescence and ultralong afterglow characteristics due to the presence of Ln<sup>III</sup> doping and confinement of terpyridine in PVA. This study provides a new avenue to impart modulable mechanical strength and shape memory to RTP materials.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 10\",\"pages\":\"1595 - 1601\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3189-2\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3189-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Dynamic Crosslinked Phosphorescent Poly(vinyl alcohol)-Terpyridine Films with Enhanced Mechanical Properties and Tunable Shape Memory
Achieving versatile room temperature phosphorescence (RTP) materials, especially with tunable mechanical properties and shape memory is attractive and essential but rarely reported. Here, a strategy was reported to realize multi-functional RTP films with multicolor fluorescence, ultralong afterglow, adjustable mechanical properties, and shape memory through the synergistic dynamic interaction of lanthanide (LnIII)-terpyridine coordination, borate ester bonds, and hydrogen bondings in a poly(vinyl alcohol) (PVA) matrix. By varying the amount of borax, the mechanical properties of the films could be finely controlled due to the change of crosslinking degree of dynamic borate ester bonds in PVA. The assembly and disassembly of borate ester bonds upon the trigger of borax and acid were applied as reversible linkage to achieve programmable shape memory behavior. In addition, the films displayed both fascinating multicolor fluorescence and ultralong afterglow characteristics due to the presence of LnIII doping and confinement of terpyridine in PVA. This study provides a new avenue to impart modulable mechanical strength and shape memory to RTP materials.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.