金属材料的抗穿透性能和机理:综述

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Pub Date : 2024-09-01 DOI:10.1016/j.eng.2024.03.023
Jialin Chen , Shutao Li , Shang Ma , Yeqing Chen , Yin Liu , Quanwei Tian , Xiting Zhong , Jiaxing Song
{"title":"金属材料的抗穿透性能和机理:综述","authors":"Jialin Chen ,&nbsp;Shutao Li ,&nbsp;Shang Ma ,&nbsp;Yeqing Chen ,&nbsp;Yin Liu ,&nbsp;Quanwei Tian ,&nbsp;Xiting Zhong ,&nbsp;Jiaxing Song","doi":"10.1016/j.eng.2024.03.023","DOIUrl":null,"url":null,"abstract":"<div><p>This article reviews the anti-penetration principles and strengthening mechanisms of metal materials, ranging from macroscopic failure modes to microscopic structural characteristics, and further summarizes the micro–macro correlation in the anti-penetration process. Finally, it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration. From the macro perspective, nine frequent penetration failure modes of metal materials are summarized, with a focus on the analysis of the cratering, compression shear, penetration, and plugging stages of the penetration process. The reasons for the formation of adiabatic shear bands (ASBs) in metal materials with different crystal structures are elaborated, and the formation mechanism of the equiaxed grains in the ASB is explored. Both the strength and the toughness of metal materials are related to the materials’ crystal structures and microstructures. The toughness is mainly influenced by the deformation mechanism, while the strength is explained by the strengthening mechanism. Therefore, the mechanical properties of metal materials depend on their microstructures, which are subject to the manufacturing process and material composition. Regarding numerical simulation, the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice. In summary, this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials, along with their mechanisms and correlation during the anti-penetration and impact-resistance processes, thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924004302/pdfft?md5=5957ab19f7690e5a2d19e9faf7fac542&pid=1-s2.0-S2095809924004302-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The Anti-Penetration Performance and Mechanism of Metal Materials: A Review\",\"authors\":\"Jialin Chen ,&nbsp;Shutao Li ,&nbsp;Shang Ma ,&nbsp;Yeqing Chen ,&nbsp;Yin Liu ,&nbsp;Quanwei Tian ,&nbsp;Xiting Zhong ,&nbsp;Jiaxing Song\",\"doi\":\"10.1016/j.eng.2024.03.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article reviews the anti-penetration principles and strengthening mechanisms of metal materials, ranging from macroscopic failure modes to microscopic structural characteristics, and further summarizes the micro–macro correlation in the anti-penetration process. Finally, it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration. From the macro perspective, nine frequent penetration failure modes of metal materials are summarized, with a focus on the analysis of the cratering, compression shear, penetration, and plugging stages of the penetration process. The reasons for the formation of adiabatic shear bands (ASBs) in metal materials with different crystal structures are elaborated, and the formation mechanism of the equiaxed grains in the ASB is explored. Both the strength and the toughness of metal materials are related to the materials’ crystal structures and microstructures. The toughness is mainly influenced by the deformation mechanism, while the strength is explained by the strengthening mechanism. Therefore, the mechanical properties of metal materials depend on their microstructures, which are subject to the manufacturing process and material composition. Regarding numerical simulation, the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice. In summary, this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials, along with their mechanisms and correlation during the anti-penetration and impact-resistance processes, thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809924004302/pdfft?md5=5957ab19f7690e5a2d19e9faf7fac542&pid=1-s2.0-S2095809924004302-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924004302\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924004302","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文回顾了金属材料的抗穿透原理和强化机制,从宏观失效模式到微观结构特征,并进一步总结了抗穿透过程中的微观-宏观相关性。最后,报告概述了冲击和渗透领域所使用的构成模型和数值模拟研究。从宏观角度总结了金属材料的九种常见穿透失效模式,重点分析了穿透过程中的缩孔、压缩剪切、穿透和堵塞阶段。阐述了不同晶体结构的金属材料形成绝热剪切带(ASB)的原因,并探讨了ASB中等轴晶粒的形成机理。金属材料的强度和韧性都与材料的晶体结构和微观结构有关。韧性主要受变形机制的影响,而强度则由强化机制解释。因此,金属材料的机械性能取决于其微观结构,而微观结构又受到制造工艺和材料成分的影响。在数值模拟方面,根据金属材料在高速渗透实践中的应用特点,总结了不同构成模型和模拟方法的优缺点。总之,本文系统概述了金属材料的宏观和微观特性,以及它们在抗穿透和抗冲击过程中的机理和相关性,从而为科学认识金属材料的抗穿透性能及其优化做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Anti-Penetration Performance and Mechanism of Metal Materials: A Review

This article reviews the anti-penetration principles and strengthening mechanisms of metal materials, ranging from macroscopic failure modes to microscopic structural characteristics, and further summarizes the micro–macro correlation in the anti-penetration process. Finally, it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration. From the macro perspective, nine frequent penetration failure modes of metal materials are summarized, with a focus on the analysis of the cratering, compression shear, penetration, and plugging stages of the penetration process. The reasons for the formation of adiabatic shear bands (ASBs) in metal materials with different crystal structures are elaborated, and the formation mechanism of the equiaxed grains in the ASB is explored. Both the strength and the toughness of metal materials are related to the materials’ crystal structures and microstructures. The toughness is mainly influenced by the deformation mechanism, while the strength is explained by the strengthening mechanism. Therefore, the mechanical properties of metal materials depend on their microstructures, which are subject to the manufacturing process and material composition. Regarding numerical simulation, the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice. In summary, this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials, along with their mechanisms and correlation during the anti-penetration and impact-resistance processes, thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
期刊最新文献
Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends Direct Ethylene Purification from Cracking Gas via a Metal–Organic Framework Through Pore Geometry Fitting Utilization of Bubbles and Oil for Microplastic Capture from Water Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1