利用神经网络模拟喜马拉雅山脉中部道里干嘎河流域数据稀缺的阶段-排泄量和泥沙-排泄量关系

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Clean-soil Air Water Pub Date : 2024-08-28 DOI:10.1002/clen.202300388
Kuldeep Singh Rautela, Vivek Gupta, Juna Probha Devi, Lone Rafiya Majeed, Jagdish Chandra Kuniyal
{"title":"利用神经网络模拟喜马拉雅山脉中部道里干嘎河流域数据稀缺的阶段-排泄量和泥沙-排泄量关系","authors":"Kuldeep Singh Rautela, Vivek Gupta, Juna Probha Devi, Lone Rafiya Majeed, Jagdish Chandra Kuniyal","doi":"10.1002/clen.202300388","DOIUrl":null,"url":null,"abstract":"This study focuses on the hydro‐sedimentological characterization and modeling of the Dhauliganga River in Uttarakhand, India. Field data collected from 2018–2020, including stage, velocity, and suspended sediment concentration (SSC), showed notable variations influenced by melting snow, glaciers, and precipitation. Challenges in accurately modeling rivers with a topography and sparse gauging stations were addressed using artificial neural networks (ANN). The calibrated models precisely predicted stage‐discharge and sediment‐discharge relationships, demonstrating the effectiveness of machine learning, particularly ANN‐based modeling, in such challenging terrains. The model's performance was assessed using coefficient of determination (<jats:italic>R</jats:italic><jats:sup>2</jats:sup>), root mean square error (RMSE), and mean square error (MSE). During the calibration phase, the model exhibited notable performance with <jats:italic>R</jats:italic><jats:sup>2</jats:sup> values of 0.96 for discharge and 0.63 for SSC, accompanied by low RMSE values of 5.29 cu m s<jats:sup>–1</jats:sup> for discharge and 0.61 g for SSC. Subsequently, in the prediction phase, the model maintained its robustness, achieving <jats:italic>R</jats:italic><jats:sup>2</jats:sup> values of 0.97 for discharge and 0.63 for SSC, along with RMSE values of 5.67 cu m s<jats:sup>–1</jats:sup> for discharge and 0.68 g for SSC. The study also found a strong agreement between water flow estimates derived from traditional methods, ANN, and actual measurements. The suspended sediment load, influenced by both water flow and SSC, varied annually, potentially modifying aquatic habitats through sediment deposition, and altering aquatic communities. These findings offer crucial insights into the hydro‐sedimentological dynamics of the studied river, providing valuable applications for sustainable water‐resource management in challenging terrains and addressing environmental concerns related to sedimentation, water quality, and aquatic ecosystem.","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"41 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling stage‐discharge and sediment‐discharge relationships in data‐scarce Himalayan River Basin Dhauliganga, Central Himalaya, using neural networks\",\"authors\":\"Kuldeep Singh Rautela, Vivek Gupta, Juna Probha Devi, Lone Rafiya Majeed, Jagdish Chandra Kuniyal\",\"doi\":\"10.1002/clen.202300388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the hydro‐sedimentological characterization and modeling of the Dhauliganga River in Uttarakhand, India. Field data collected from 2018–2020, including stage, velocity, and suspended sediment concentration (SSC), showed notable variations influenced by melting snow, glaciers, and precipitation. Challenges in accurately modeling rivers with a topography and sparse gauging stations were addressed using artificial neural networks (ANN). The calibrated models precisely predicted stage‐discharge and sediment‐discharge relationships, demonstrating the effectiveness of machine learning, particularly ANN‐based modeling, in such challenging terrains. The model's performance was assessed using coefficient of determination (<jats:italic>R</jats:italic><jats:sup>2</jats:sup>), root mean square error (RMSE), and mean square error (MSE). During the calibration phase, the model exhibited notable performance with <jats:italic>R</jats:italic><jats:sup>2</jats:sup> values of 0.96 for discharge and 0.63 for SSC, accompanied by low RMSE values of 5.29 cu m s<jats:sup>–1</jats:sup> for discharge and 0.61 g for SSC. Subsequently, in the prediction phase, the model maintained its robustness, achieving <jats:italic>R</jats:italic><jats:sup>2</jats:sup> values of 0.97 for discharge and 0.63 for SSC, along with RMSE values of 5.67 cu m s<jats:sup>–1</jats:sup> for discharge and 0.68 g for SSC. The study also found a strong agreement between water flow estimates derived from traditional methods, ANN, and actual measurements. The suspended sediment load, influenced by both water flow and SSC, varied annually, potentially modifying aquatic habitats through sediment deposition, and altering aquatic communities. These findings offer crucial insights into the hydro‐sedimentological dynamics of the studied river, providing valuable applications for sustainable water‐resource management in challenging terrains and addressing environmental concerns related to sedimentation, water quality, and aquatic ecosystem.\",\"PeriodicalId\":10306,\"journal\":{\"name\":\"Clean-soil Air Water\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean-soil Air Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/clen.202300388\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/clen.202300388","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是印度北阿坎德邦道里甘加河的水文沉积特征和建模。2018-2020 年收集的实地数据,包括河段、流速和悬浮泥沙浓度(SSC),显示出受融雪、冰川和降水影响的显著变化。利用人工神经网络(ANN)解决了对地形复杂、测站稀少的河流进行精确建模的难题。校准后的模型精确预测了阶段-排泄量和泥沙-排泄量之间的关系,证明了机器学习,特别是基于人工神经网络的建模,在这种具有挑战性的地形中的有效性。模型的性能通过判定系数(R2)、均方根误差(RMSE)和均方误差(MSE)进行评估。在校准阶段,该模型表现出显著的性能,排水量的 R2 值为 0.96,SSC 为 0.63,同时 RMSE 值较低,排水量为 5.29 立方米/秒,SSC 为 0.61 克。随后,在预测阶段,该模型保持了其稳健性,排泄量的 R2 值为 0.97,SSC 的 R2 值为 0.63,排泄量的均方根误差值为 5.67 立方米/秒,SSC 的均方根误差值为 0.68 克。研究还发现,传统方法、ANN 和实际测量得出的水流估算值之间的一致性很高。受水流和 SSC 影响的悬浮泥沙负荷每年都有变化,可能会通过泥沙沉积改变水生生境,并改变水生群落。这些发现为研究河流的水文沉积动力学提供了重要见解,为挑战性地形中的可持续水资源管理以及解决与沉积、水质和水生生态系统相关的环境问题提供了宝贵应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling stage‐discharge and sediment‐discharge relationships in data‐scarce Himalayan River Basin Dhauliganga, Central Himalaya, using neural networks
This study focuses on the hydro‐sedimentological characterization and modeling of the Dhauliganga River in Uttarakhand, India. Field data collected from 2018–2020, including stage, velocity, and suspended sediment concentration (SSC), showed notable variations influenced by melting snow, glaciers, and precipitation. Challenges in accurately modeling rivers with a topography and sparse gauging stations were addressed using artificial neural networks (ANN). The calibrated models precisely predicted stage‐discharge and sediment‐discharge relationships, demonstrating the effectiveness of machine learning, particularly ANN‐based modeling, in such challenging terrains. The model's performance was assessed using coefficient of determination (R2), root mean square error (RMSE), and mean square error (MSE). During the calibration phase, the model exhibited notable performance with R2 values of 0.96 for discharge and 0.63 for SSC, accompanied by low RMSE values of 5.29 cu m s–1 for discharge and 0.61 g for SSC. Subsequently, in the prediction phase, the model maintained its robustness, achieving R2 values of 0.97 for discharge and 0.63 for SSC, along with RMSE values of 5.67 cu m s–1 for discharge and 0.68 g for SSC. The study also found a strong agreement between water flow estimates derived from traditional methods, ANN, and actual measurements. The suspended sediment load, influenced by both water flow and SSC, varied annually, potentially modifying aquatic habitats through sediment deposition, and altering aquatic communities. These findings offer crucial insights into the hydro‐sedimentological dynamics of the studied river, providing valuable applications for sustainable water‐resource management in challenging terrains and addressing environmental concerns related to sedimentation, water quality, and aquatic ecosystem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
期刊最新文献
Issue Information: Clean Soil Air Water. 11/2024 Effect of Intercropping Soybean on the Diversity of the Rhizosphere Soil Arbuscular Mycorrhizal Fungi Communities in Wheat Field Short-Term Benefits of Tillage and Agronomic Biofortification for Soybean–Wheat Cropping in Central India Issue Information: Clean Soil Air Water. 10/2024 Geochemical Interaction and Bioavailability of Zinc in Soil Under Long-Term Integrated Nutrient Management in Pearl Millet–Wheat System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1